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Abstract 

Background: While several cohort studies report associations between chronic exposure to fine 

particles (PM2.5) and mortality, few have studied the effects of chronic exposure to ultrafine (UF) 

particles. In addition, few studies have estimated the effects of the constituents of either PM2.5 or 

UF particles.  

Methods: We used a statewide cohort of over 100,000 women from the California Teachers 

Study who were followed from 2001 through 2007. Exposure data at the residential level were 

provided by a chemical transport model that computed pollutant concentrations from over 900 

sources in California. Besides particle mass, monthly concentrations of 11 species and 8 sources 

or primary particles were generated at 4 km grids. We used a Cox proportional hazards model to 

estimate the association between the pollutants and all-cause, cardiovascular, ischemic heart 

disease (IHD) and respiratory mortality.  

Results: We observed statistically significant (p < 0.05) associations of IHD with PM2.5 mass, 

nitrate elemental carbon (EC), copper (Cu), and secondary organics and the sources gas- and 

diesel-fueled vehicles, meat cooking, and high sulfur fuel combustion. The hazard ratio estimate 

of 1.19 (95% CI: 1.08, 1.31) for IHD in association with a 10-µg/m3 increase in PM2.5 is 

consistent with findings from the American Cancer Society cohort. We also observed significant 

positive associations between IHD and several UF components including EC, Cu, metals, and 

mobile sources.  

Conclusions: Using an emissions-based model with a 4 km spatial scale, we observed significant 

positive associations between IHD mortality and both fine and ultrafine particle species and 

sources. Our results suggest that the exposure model effectively measured local exposures and 

facilitated the examination of the relative toxicity of particle species.   
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Introduction 

Several cohort studies have reported associations of long-term exposure to fine particles 

(PM2.5 or particulate matter less than 2.5 microns in diameter) with cardiovascular mortality 

(Hoek et al. 2013; Laden et al. 2006; Lipsett et al. 2011; Pope et al. 2002). Since PM2.5 is a 

heterogeneous mix of particle sizes and chemistry and is generated from multiple sources, the 

specific constituents and sources of concern have not been fully elucidated. Until recently, 

among the constituents of PM2.5, long-term exposures (i.e., one year or more) for cohort studies 

have only been generated for sulfates and black carbon (Dockery et al. 1993; Pope et al. 1995; 

Smith et al. 2009). In addition, because of the difficulty in measuring exposure, there has been 

little focus to date on the health effects of long-term exposure to ultrafine (UF) particles 

(particles < 0.1 micron in diameter).  

Epidemiologic analysis of the effects of particulate matter constituents is hindered by 

their spatial heterogeneity and the reliance on a few fixed site monitors to represent exposures in 

large metropolitan areas. For example, for PM10 (particles less than 10 microns in diameter), 

many metropolitan areas have only a small proportion of their total population within 15 km of a 

monitor such as New York (3.5%) Detroit (23%), Boston (39%), Seattle (31%), and Philadelphia 

(35%) (US EPA 2009). The proportion for those above age 65 years, a well-documented 

susceptible subgroup, who are within 15 km are only slightly higher: New York (4%), Detroit 

(27%), Boston (41%), Seattle (32%), and Philadelphia (38%). While coverage for PM2.5 is much 

higher given its spatial homogeneity, its constituents are known to be spatially variable and often 

very localized (Kim et al. 2005). The exposure misclassification will be even greater for 

measurement of mass and constituents of UF particles given their spatial heterogeneity (Sakurai 
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et al. 2003; Sioutas et al. 2005). Some cohort studies have made use of Land Use Regression 

(LUR) models to estimate PM2.5 or nitrogen dioxide (Beelen et al. 2014) at finer spatial scales 

but LUR models for particle sources or species are not widely available.  

In a previous study, the relation between mortality and long-term exposure to constituents 

of PM2.5 was examined using data from the California Teachers Study (CTS) cohort (Ostro et al. 

2011). Started in 1995, the CTS is a prospective study of over 130,000 current and former female 

teachers and administrators identified through the State Teachers Retirement System. Due to 

limited data on particle species, this earlier report relied on PM2.5 data collected and further 

analyzed by the U.S. Environmental Protection Agency at eight fixed site monitors as part of the 

Speciation Trends Network (US EPA 2008). The 24-hr averaged measurements were usually 

obtained on an every third- or sixth-day basis. To minimize exposure misclassification, 

catchment buffer areas of 8 and 30 km were drawn around each monitor. The 30 km buffer is 

likely too large to capture exposure contrasts of many of the species while the 8 km buffer 

significantly reduced the sample size resulting in more unstable estimates and reduced statistical 

power. Although these buffers were an improvement over studies using a single or multiple 

monitors to represent exposure over large metropolitan areas, they may not sufficiently measure 

concentrations of many of the PM constituents, such as elemental carbon (EC) and transition 

metals that are known to exhibit high spatial variance. Specifically, Hu et al. (2014a; 2014b) 

reported significant bias for several species of fine and UF particles when comparing the central-

site monitor readings applied to the entire metropolitan area population versus our estimated 

population-weighted concentrations. The latter are derived as the product (both at the 4 km grid 

scale) of the population and our model-based estimates of the pollutants. Model estimates are 

highly correlated (r> 0.8) with observations at the monitoring locations. For example, for the 
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seven major California Metropolitan Statistical Areas that had available data, the estimated 

population-weighted concentrations for EC were generally lower than central monitor 

predictions, with a maximum bias of -50% in Los Angeles and an average bias of -33%. While 

measurement and model predictions were in good agreement at the monitor locations, the bias 

was introduced by spatial variability around the monitor. 

For the current study, we combined data from the CTS with newly developed exposure 

data generated from the UCD/CIT (University of California Davis/California Institute of 

Technology) model (J. Hu et al., unpublished data). The UCD/CIT chemical transport model 

uses calculated meteorological fields and emissions estimates for different sources to predict 

airborne particulate matter concentrations. Particulate matter emissions are assigned a size and 

composition distribution based on measurements in source-testing experiments. The source-

identity of all particulate matter emissions is retained through the simulated atmosphere. In the 

present study, ground-level mass concentrations for 50 PM constituents were estimated over the 

major population regions in California at a 4 km resolution for the period of 2000-2007. For 

many species of fine and UF particles, model predictions are highly correlated with measured 

values, particularly for longer averaging times (>2 weeks). For example, correlations were 

greater than 0.8 for comparisons between annual modeled and measured concentrations of 10 

different PM2.5 components for 5 of the 7 metropolitan regions with available monitoring data 

(Hu et al. 2014b). 

Below, we report our findings of an analysis of the associations of long-term exposure to 

19 constituents and sources of both PM2.5 and UF particles on mortality from all natural causes, 

cardiovascular disease, ischemic heart disease (IHD), and pulmonary disease.  
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Methods 

Data  

The CTS is a prospective study of 133,479 current and former female teachers and 

administrators who completed baseline questionnaires mailed to them in 1995 to investigate the 

incidence of breast cancer in public school teachers and administrators, as described in detail in 

Bernstein et al. (2002). Subsequent questionnaires were mailed to CTS participants in 1997 and 

2000. The design and on-going follow-up of the CTS cohort is a multi-institutional collaboration 

involving researchers with diverse and complementary areas of expertise. Record linkage is 

conducted annually to mortality files administered by the California Department of Public 

Health. In addition, residential addresses of each CTS participant were updated annually for the 

mailing of newsletters. The mean age of CTS participants at enrollment was 54, with 90% 

between ages 30 and 80. The cohort is multi-ethnic but primarily non-Hispanic white (86.7%) 

and born in the United States (93.6%). For this study, we used cohort follow-up data from 

January 2001 through July 2007. Women under age 30 at the start of the study were excluded in 

order to focus on mid-life and older women. Use of data on human subjects in the main CTS 

cohort study was reviewed and initially approved by the California Committee for the Protection 

of Human Subjects, Health and Human Services Agency, and by the institutional review boards 

(IRB) for each participating institution in June 1995 and annually thereafter. Informed consent 

was obtained upon entry into the cohort. Analysis for this manuscript was approved in August 

2013 by the IRB of the Cancer Prevention Institute of California, the center of one of the 

Principal Investigators (PR).  
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Health outcomes 

In this analysis, we focused on associations between long-term exposures and mortality. 

Deaths were assigned codes based on the International Classification of Diseases, volume 10 

(ICD-10) for the following outcomes: all-cause deaths excluding those with an external cause 

(A00-R99), cardiovascular deaths (I00-I99), IHD deaths (I20-I25), and pulmonary deaths (C34, 

J00-J98). Person-days at risk were calculated as the number of days starting from January 1, 

2001 until the earliest of three dates: (i) the date of death; (ii) a move out of California for at least 

four months; or (iii) July 31, 2007, the end of follow-up for this analysis. If a woman moved out 

of state for less than four months exposures during that time were not included in the calculations 

of the long-term average. Women who died from a cause other than the outcome of interest 

during the follow-up period were censored at the time of their deaths. 

Air pollution exposure estimates 

The UCD/CIT chemical transport model was used to estimate ground-level 

concentrations of 50 PM constituents over the major population regions in California using a 4-

km grid resolution for the period from 2000 through 2007 (Hu et al. 2014a; Hu et al. 2014b). A 

sensitivity analysis conducted at 250 m resolution over Oakland CA (Joe et al. 2014) indicated 

that 4 km resolution captures 55-70% of concentration variability within the urban area.  

Using the extensive emissions inventory in California, the model calculations track the 

mass and number concentrations of the PM constituents in particle diameters ranging from 0.01 

to 10 µm through calculations that describe emissions, transport, diffusion, deposition, 

coagulation, gas- and particle-phase chemistry, and gas-to-particle conversion (Hu et al. 2014d). 

The model solves the coupled set of differential equations that describe how atmospheric 
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processes change pollutant concentrations in regularly spaced atmospheric grid cells. Thus, the 

predicted exposure concentrations primarily reflect the balance between emissions inventories of 

fresh particles and meteorological fields that drive dispersion and chemical reaction.  

Model predictions were saved at hourly time resolution and averaged to longer times as 

needed. Predicted concentrations were evaluated against ambient measurements at all available 

locations and times. PM2.5 mass predictions had a mean fractional bias within ±0.3 (meeting 

accepted performance criteria) at 52 sites out of the total 66 sites across California after 

correcting for bias in the dust emissions as many studies have shown that dust emissions in the 

current emission inventory are overestimated (J. Hu et al., unpublished data). Good correlations 

between predictions and measurements (r > 0.8) were demonstrated for many of the PM2.5 and 

UF species at most of the monitoring stations, particularly for the monthly, seasonal and annual 

averages. For example, monthly PM2.5 nitrates were correlated with measurements with r = 0.76 

(15 sites), monthly PM2.5 EC were correlated with measurements with r = 0.94 (8 sites), and 

monthly PM2.5 concentrations of potassium, chromium, zinc, iron, titanium, arsenic, calcium, 

manganese, and strontium were correlated with measurements with r ≥ 0.8 (5 sites out of a total 

of 8). For EC in the UF range, the correlation was above r=0.9 for 117 available measurements 

made at 13 locations during 9 intensive field campaigns that each lasted several weeks (Hu et al. 

2014b). The quality of the model predictions summarized above reflects the accuracy of the 

emissions inventories that have been refined over three decades in California, the development of 

reactive chemical transport models that include important aerosol transformation mechanisms, 

and the development of prognostic meteorological models that allow for long simulations of 

historical meteorology.  
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Coarse particle predictions (2.5 µm < Dp < 10 µm) have only undergone preliminary 

comparisons to measurements and were not used for exposure estimates in the current study. 

Likewise, UF number concentrations were not used because our modeling did not include 

nucleation, the process by which particles are formed directly from gas molecules, which would 

greatly impact this parameter. UF mass concentrations are highly correlated with particle surface 

area (Kuwayama et al. 2013) and serve as a good metric for the potential exposure to UF 

particles. The measured correlation between UF mass and particle surface was 0.97 in Fresno, a 

typical city in central California. For many of the fine and UF species, Hu et al. (2014a) observed 

strong spatial variability within metropolitan areas (Figure 1). 

Based on previous studies (Ostro et al. 2007; Ostro et al. 2011; Peng et al. 2009; 

Zanobetti et al. 2009) we chose to examine a subset of the available constituents. Additionally, 

some constituents were eliminated given their high inter-correlation or low concentrations.  

Thus, for each particle size, we analyzed the following constituents: copper (Cu), iron (Fe), 

manganese (Mn), Nitrate, EC, organic carbon (OC), “other” species (i.e., mineral dusts and 

constituents not measured), “other” metals (those besides Cu, Fe, and Mn that were explicitly 

resolved), and secondary organic aerosol (SOA). SOA formation was simulated with the 

mechanism in EPA’s Community Multi-scale Air Quality (CMAQ) model version 4.7 (Carlton 

et al. 2010). SOAs were divided into anthropogenic (SOA_ant: derived from long-chain alkanes, 

xylenes, toluenes and benzene and their oligomers) and biogenic (SOA_bio: derived from 

isoprenes, monoterpenes, sesiquiterpenes and their oligomers). Nitrate was not estimated for the 

UF size fraction. Additional estimates were provided for sources of primary aerosols including 

on-road gasoline, off-road gasoline, on-road diesel, off-road diesel, wood smoke, meat cooking, 
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high sulfur fuel combustion (including distillate oil, marine vessel fuel, aircraft jet fuel, liquid 

and solid waste fuel), and “other anthropogenic”.  

Ultimately, the exposure metrics were combined with the updated addresses Monthly 

individual exposure estimates were developed through spatial linkage of the geocoded residential 

addresses. All residences within a given grid in a given month were assigned the modeled 

pollutant value for that grid for that period. The average long-term pollution exposure for a 

participant was obtained by calculating the mean of her monthly averages. At the time of each 

death, the long-term average for each individual remaining in the cohort was recalculated, 

allowing comparison between the decedent’s long-term average exposure and those of the 

members remaining in the risk set. 

Covariates 

The individual-level covariates included as explanatory variables in the regression 

models were based on previous results from air pollution studies for this cohort (Lipsett et al. 

2011). Specifically, the covariates included twenty individual-level covariates (a total of 58 

terms): age (divided into two-year categories between ages 30 and 79, three-year categories 

between ages 80 and 88, and one category for women aged 89 and older); race (non-Hispanic 

White, other (African-American, Hispanic, Asian, Pacific Islander, and Native American) or 

unknown); marital status (married/living with partner, not married, and unknown); smoking 

status (never, former, and current smokers) and pack-years of smoking (continuous variable for 

former and current smokers); second-hand smoke exposure (none, household exposure, 

unknown); body mass index (BMI) (16-19 kg/m2, 20-24, 25-29, 30-39, 40-55); lifetime physical 

activity (tertiles, unknown); alcohol consumption (beer (no/yes/unknown), wine 
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(no/yes/unknown), liquor (no/yes/unknown)); average daily dietary intake of fat (tertiles, 

unknown), fiber (tertiles, unknown), and calories (tertiles, unknown); menopausal status and 

hormone replacement therapy use combined (pre-menopausal, peri/post-menopausal and no HT 

use, peri/post menopausal and past HT use, peri/post-menopausal and current use of estrogen, 

peri/post-menopausal and current use of estrogen plus progestin, and unknown menopausal 

status or HT use; family history of myocardial infarction (yes/no) or stroke (yes/no); and use of 

blood pressure medication (low, medium, high, unknown) or aspirin (low, medium, high, 

unknown). Data on all individual-level variables except marital status (which was assessed in the 

2000 questionnaire) were obtained from the baseline questionnaire.  

Statistical methods  

We fitted Cox proportional hazards models to estimate hazard ratios (HRs) and 95% 

confidence intervals (CIs) for associations between each pollutant and the outcomes of interest. 

We examined each pollutant with a separate regression model adjusted for the covariates 

described above. The Cox model was stratified by age and race/ethnicity. To ensure that we 

would be examining associations with chronic rather than acute exposures, study exposures 

began in January 2000, the cohort follow-up began in January 2001 and both continued until July 

2007. Two additional sensitivity analyses were conducted. First, we reran the models after 

including six Census-derived contextual (neighborhood) variables including income (median 

household income), income inequality (percent below poverty level), education (percent with 

college degree), population size, racial composition (percent white, percent black, percent 

Hispanic) and unemployment (percent unemployed). These variables were derived from the 2000 

census at the block group level based on the subject’s residence at the time of the baseline 
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questionnaire. These variables represent social, economic, and environmental settings at a group 

level that may be associated with disease outcomes at the individual level. As such, they may 

provide additional control for residual confounding. The second sensitivity analysis involved 

two-pollutant models for a selected set of constituents for the outcome IHD mortality. 

Specifically, we took the constituent of PM2.5 and UF particles with the highest HR and ran 

additional regressions that included each of the other constituents in the same particle size. The 

HR and CIs are presented for a change in their respective interquartile ranges (IQRs) unless 

otherwise noted. Statistical significance was based on a p-value < 0.05 and model goodness-of-

fit was based on the Akaike information criterion (AIC). The analysis was conducted using 

PHREG in SAS software.  

Results 

Of the 133,479 women who completed a baseline questionnaire we excluded 21,302 with 

no pollution data (of which 14,670 had a lack of information on residential addresses and 6,632 

lived in areas for which exposure estimates were not available), 1,363 women who had died or 

moved before the start of follow-up, 406 who were less than age 30 in January 2001, 4,684 who 

had unknown or outlier body mass index (BMI), 3,609 who were missing smoking data, 14 who 

were excluded because they consented to be included only in breast cancer studies and 217 who 

had less than 6 months of pollution values during January 2000 through December 2000, leaving 

a total of 101,884 women eligible for the study. The average length of follow-up was 6.3 years 

with total person-years of 642,269. A total of 6,285 deaths occurred during the follow-up from 

January 2001 through July 2007; of these, 2,400 were due to cardiovascular diseases, 1,085 were 

due to IHD and 929 were due to pulmonary diseases. As indicated in Table 1, the average age of 
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eligible cohort members at the start of follow-up was 57 years, 86% of these women were non-

Hispanic white and 5% were current smokers. Table 2 summarizes the mean and distributions of 

the concentrations of PM2.5 and UF constituents used in the analysis. For example, the mean of 

PM2.5 was 17.9 µg/m3 with OC (3.9 µg/m3) and nitrate (3.7 µg/m3) as the largest constituents. 

For UFs, the mean was 1.3 µg/m3 with OC the largest contributor at 0.9 µg/m3.  

A majority of the species were moderately to highly correlated (r = 0.5 to 0.8) (see 

supplemental tables S1 and S2). PM2.5 nitrates had correlations of 0.55, 0.43, 0.65 and 0.84 with 

EC, OC, Cu and SOA_ant, respectively. For UFs, EC had correlations of 0.67, 0.19 and 0.40 

with OC, Cu, and SO_ant, respectively. The average inter-constituent correlation for PM2.5 was 

0.59 and for UFs was 0.64. The implications of these correlations are described in the discussion 

section below. 

In the Cox proportional hazards regression analysis for PM2.5, the only statistically 

significant association (p < 0.05) observed between constituents and all-cause mortality was for 

the source of high sulfur fuel combustion (HR = 1.03; 95% CI: 1.01, 1.05 for a change in its 

IQR) , and there were no statistically significant associations with pulmonary disease mortality 

(see Supplemental Table S3). For cardiovascular disease mortality, statistically significant 

associations were demonstrated only for nitrate (HR = 1.10; 95% CI: 1.02, 1.18) and high sulfur 

fuel combustion (HR = 1.05, 95% CI: 1.02, 1.09). Associations with p-values < 0.10 were 

observed for PM2.5 mass (HR = 1.05, 95% CI: 0.99, 1.12) and SOA_ant (HR = 1.06, 95% CI: 

0.99, 1.13) (Table S3). As summarized in Table 3 and Figure 2, however, there were many 

statistically significant associations with IHD mortality. Among the constituents, the highest 

statistically significance were with nitrate (HR = 1.28; 95% CI: 1.16, 1.42) and SOA_ant (HR = 
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1.23, 95% CI: 1.11, 1.36), both of which had higher HRs and fit the data slightly better, based on 

the (lower) AIC, than that of PM2.5 mass (HR = 1.18; 95% CI: 1.08, 1.30). Among the emission 

sources, we found statistically significant associations between IHD and all four of the vehicle 

sources, meat cooking, and high sulfur content fuel combustion.  

For UFs, no statistically significant associations were observed for either all-cause or 

pulmonary mortality (Supplemental Material Table S4). For cardiovascular mortality, significant 

associations were noted for Cu (HR = 1.03; 95% CI: 1.00, 1.05), and the sources of high sulfur 

fuel combustion (HR = 1.04; 95% CI: 1.01, 1.07). However, many statistically significant 

associations were again demonstrated for IHD mortality (Table 3). Among the species, this 

includes Cu, Fe, EC, OC, other compounds and metals, SOA_ant and SOA_bio. The largest 

estimated associations were for SOA_ant (HR = 1.25, 95% CI: 1.13, 1.39), EC (HR = 1.15, 95% 

CI: 1.06, 1.26) and other metals (HR = 1.13, 95% CI: 1.05, 1.21), each of which had lower p-

values and slightly better fitting models based on AIC than did UF mass (HR =1.10, 95% CI: 

1.02, 1.18). Many of the other constituents also had better model fits than PM2.5. Among the 

sources, associations were seen for both on and off-road diesel and gasoline, meat cooking, high 

sulfur fuel combustion and other anthropogenic sources.  

The analysis of IHD mortality showed that while PM2.5 mass had a lower p-value than 

UF mass, UF mass and each of the UF constituents provided a better fit and had a lower p-value 

than their corresponding PM2.5 constituent (except for Mn for which there was no statistical 

significance for either particle size).  

In our sensitivity analysis, we found that adding the six contextual variables to the model 

did not quantitatively alter any of the results (HR or p-value) except in one case where PM2.5 



16 

 

SOA_bio became non-significant (data not shown). We also examined two-pollutant models 

with the PM2.5 constituent with the largest effect estimate for IHD (PM2.5 nitrate) in a regression 

with each of the other PM2.5 constituents. Likewise, we examined two-pollutant models for UF 

(SOA_ant) with each of the other UF constituents (Tables 4 and 5). For the two-pollutant models 

with PM2.5 nitrate, the HRs for nitrate were basically unchanged and none of the other PM2.5 

constituents, including mass, were statistically significant. For UFs SOA_ant, the HR was again 

basically unchanged and only one other constituent, Cu, was also statistically significantly 

related to IHD mortality.  

Discussion 

Our analysis of long-term exposure to the mass and constituents of PM2.5 and UF 

particles revealed several statistically significant associations with all-cause, cardiovascular, and 

IHD mortality. For PM2.5, high sulfur content fuel combustion was associated with all three 

endpoints, and nitrates were associated with cardiovascular and IHD mortality. Several other 

constituents reached statistical significance with IHD mortality including PM2.5 mass, Cu, EC, 

and the SOAs, as well as the sources including gas- and diesel-fueled vehicles, meat cooking, 

and high sulfur fuel combustion. Among the PM2.5 constituents, based on their associated IQRs, 

nitrate had the highest HR and provided the best fit of the data. For UFs, constituents such as 

SOA_ant, EC and “other” metals exhibited statistically significant associations with IHD 

mortality, as did all of the mobile sources and high sulfur fuel combustion. For both PM2.5 and 

UF particles, several constituents generated higher HRs based on their relevant IQRs than their 

associated mass measurements and in some cases (e.g, UF mass versus SOA_ant) the differences 

were statistically significant based on methodology suggested by Schenker and Gentleman 
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(2001). In addition, for all of the constituents, there were better model fits, based on AIC, for 

UFs than for PM2.5.  

In a previous analysis of the CTS (based on 73,489 women), exposures to PM2.5 were 

estimated utilizing data from 77 existing monitors located throughout the state. (Lipsett et al. 

2011). Smoothed surfaces were produced through inverse distance weighting and grids of 250 

meters were created. Monthly concentrations were assigned to residents within each grid with the 

added constraint that participants were required to be within 30 km of a monitor. That study 

produced an HR for the association of PM2.5 and IHD mortality of 1.20 (95% CI: 1.02, 1.41) for 

a 10-µg/m3 increase in PM2.5. This result comports with the HR estimate (converted to 10 µg/m3 

change) in the current study of 1.19 (95% CI: 1.08, 1.31). Our estimate is also similar to those 

for IHD mortality based on analyses of the American Cancer Society (ACS) cohort in which the 

HRs for a 10-µg/m3 increase in PM2.5 were 1.18 (95% CI: 1.14, 1.23) for the U.S. and 1.11 (95% 

CI: 1.05, 1.18) for California (Jerrett et al. 2013; Pope et al. 2002). They were also comparable to 

those of the Harvard Six-City Study of 1.26 (95% CI: 1.08, 1.47) (Laden et al. 2006) for a 10-

µg/m3 increase in PM2.5.  

We can also compare the estimates of a few constituents of PM2.5 with those obtained in a 

prior analysis of a smaller subset (n = 43,220) of the CTS (Ostro et al. 2011). In this prior 

analysis, we used a 30 km buffer catchment area around each of eight USEPA Speciation Trends 

Network monitors. The HR for cardiovascular mortality associated with a 1-µg/m3 increase in 

nitrate in the previous study was 1.03 (95% CI: 1.01, 1.06) versus the current study estimate of 

1.02 (95% CI: 1.01, 1.04). For EC, the previous study generated an HR of 1.11 (95% CI: 0.91, 

1.36) for a 1-µg/m3 change compared with 1.05 (95% CI: 0.98, 1.11) in the current study. 



18 

 

Several cohort studies have estimated the effects of EC or its correlates on cardiovascular 

mortality. For example, Smith et al. (2009) estimated its effects among 352,000 participants in 

the ACS cohort and reported a relative risk (RR) of 11% (95% CI: 3, 19) per µg/m3. The 

estimated RR of coronary heart disease mortality associated with EC was 1.08 (95% CI: 1.04, 

1.12) per µg/m3 in a cohort study in Vancouver, Canada (Gan et al. 2011). In addition, the RR of 

cardiovascular mortality from long-term exposure to black smoke, another EC correlate which 

measures the light reflectance of particles was reported in cohort studies in the Netherlands and 

Scotland (Beelen et al. 2008; Beverland et al. 2012). Based on a conversion factor calculated by 

Janssen et al. (2011), the HRs were 1.04 (95% CI: 0.95, 1.12) and 1.06 (95% CI: 1.0, 1.11) per 

µg/m3 of EC, respectively. Finally, a recent study examined the effect of PM2.5 components and 

sources using a subset of the national ACS cohort. The results of the Cox regression model for 

IHD were generally supportive of our findings. Among the components measured, they observed 

statistically significant associations with IHD for EC and several of the metals (e.g., iron, lead, 

nickel and zinc). Nitrates were not included in the ACS study but statistical associations were 

observed for sulfur, likely from the combustion or coal and residual oil, which was not included 

in our study. In addition, among the sources, traffic was dominant in both studies.  

We did not estimate any positive associations with long-term exposure to wood smoke 

although associations of short-term exposure with respiratory outcomes have been reported 

(Naeher et al. 2007). This may be a due to the episodic nature of the wood smoke or to possible 

confounding by SES. In California, most of the population-weighted exposure occurred in 

relatively high income counties, such as San Francisco, San Mateo and Santa Clara, where 

greater longevity prevails.  
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Given its large spatial variability, assessing exposure to UF particles among participants 

in cohort studies has been challenging. As such, very few studies have measured or estimated 

long-term exposures to UFs at a fine enough spatial gradient to examine its impact on health. As 

an alternative, several studies have attempted to estimate the effects of exposure to traffic, often 

a major source of UFs, using metrics such as nitrogen dioxide, distance to major roadways, 

and/or local traffic density (Health Effects Institute 2010). In general, within the first 250 meters 

or so of a major roadway, UFs may be highly correlated with other pollutants such as black 

carbon, nitrogen dioxide, and carbon monoxide. However, the relation between UFs and these 

other pollutants, especially away from major roadways, is not precise and the correlations may 

be fairly low (Sioutas et al. 2005; Zhu et al. 2008).In contrast, several studies have estimated the 

effects of daily changes in UFs where only the time-varying component is needed (Forastiere et 

al., 2005; Peters et al., 2009; Atkinson et al., 2010). The previous studies were based on counts 

of UFs rather than mass, so their estimates are not directly comparable to ours. In support of 

these and our findings on UFs, Delfino et al. (2009) followed a panel of 60 elderly subjects with 

coronary artery disease and reported associations between biomarkers of inflammation and 

several components of UF particles, including EC and primary OC. Other animal and human 

studies have implicated transition metals in generating inflammation and oxidative stress (Chen 

and Lippmann 2009; Costa and Dreher 1997; Gurgueira et al. 2002). 

Our study has both strengths and limitations. Among the strengths are the relatively large 

size of the cohort, the low prevalence of active smoking, and the relative similarity of 

occupational status and activity patterns. These factors all help to reduce residual confounding in 

our estimates. Second, the study population included a large number of women at risk of 

developing cardiovascular disease by virtue of their age and post-menopausal status. Third, 



20 

 

because of the level of spatial detail in the pollution estimates and the information on residential 

history, the temporal and spatial resolution of the pollution exposure is enhanced relative to 

many previous cohort studies. One limitation is that the study was restricted to women, and these 

women were not necessarily representative of all women. Second, only about 1,000 women were 

diagnosed with IHD or pulmonary mortality, which may introduce some instability in the risk 

estimates. Third, our estimates could be impacted by possibly correlated and unmeasured co-

pollutants. Fourth, there was high inter-correlation (most between 0.5 and 0.8) among the 

particle constituents, different levels of uncertainty and bias in their modeled estimates, and 

potentially different exposure patterns. These factors could impact the estimates of their relative 

toxicity. The high correlations reflect: (1) a consistent chemical signature of multiple pollutants 

associated with PM emitted from major sources; (2) that some elements are dominated by a 

small number of sources and/or (3) the similarity of certain pollutants from different sources 

such as gasoline and diesel vehicles. A similar range of inter-correlation among the constituents 

was reported by Ostro et al. (2011), which used monitored values for the same cohort as the 

current study, but only included eight metropolitan areas. Thus the high correlations are not 

simply a result of the modeling methodology. However, this feature does make it difficult to 

identify unique components and sources that are associated with adverse health effects. Fifth, 

stationary sources contribute less than 15% of the PM2.5 in California (ARB 2013) so sources 

such as coal burning and industrial processes and their specific constituents are not included in 

this study. Finally, while our exposure method had some significant enhancements over previous 

assessments, some misclassification will continue to exist.  

Nevertheless, this study represents an innovative effort to estimate the effects of long-

term exposure to the constituents of two pollutants, fine and ultrafine particles, which are 
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ubiquitous in our environment. As such, it provides evidence of the public health impact of a 

subset of these constituents and helps contribute to our understanding of air pollution-related 

cardiovascular disease.  
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Table 1. Descriptive statistics for health and covariate variables for women in the analysis.  

Covariate Percentage or mean ± SD 
Age at January 2001 (yr) 57.3 ± 13.8 
Race (% non-Hispanic white) 86.4 
Smoking status:   

Never smoker 68.4 
Former smoker 26.9 
Current smoker 4.7 

Total pack-years 14.7 ± 17.1 
Adult second-hand smoke exposure 48 
BMI (kg/m2) 24.9 ± 5.1 
Married/living with partner 46.6 
Non-drinker 32.2 
Menopausal status and HT use:   

Premenopausal 41.0 
Peri/postmenopausal and no hormone therapy use 11.9 
Peri/postmenopausal and current/past hormone therapy use 33.9 
Unknown menopausal status/hormone therapy use 13.2 

Dietary fat (g/d) 56.3 ± 26.8 
Dietary fiber (g/d) 15.2 ± 6.4 
Dietary calories (kcal/d) 1,595.4 ± 556.4 
Physical activity (h/wk) 4.41 ± 4.0 
Family history of heart disease 54.4 
Taking hypertension medication/aspirin 34.3 
All characteristics were reported on baseline questionnaire, except marital status which was 

 reported on the 2000 questionnaire. 
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Table 2. Distribution of fine and UF particles species and sources. 

 PM2.5  
Mean (µg/m3) 

25th %ile Median 75th %ile UF  
Mean (ng/m3) 

25th %ile  Median 75th %ile 

Pollutant         
Mass 17.9 13.1 18.2 22.8 1293 778 1214 1747 
Cu 0.5a 0.2a 0.4a 0.6a 0.03 0.01 0.01 0.03 
Fe 0.4 0.3 0.4 0.5 1.3 0.9 1.3 1.6 
Mn 7.7a 5.7a 7.9a 9.8a 0.05 0.02 0.03 0.05 
Nitrate  3.7 1.5 3.5 5.4 - - - - 
EC 1.1 0.6 1.0 1.5 113 63 103 156 
OC  3.9 2.4 3.7 5.2 908 507 845 1238 
Other Compounds 2.9 2.1 2.9 3.6 36 18 29 47 
Other Metalsb 1.0 0.7 1.0 1.2 21 12 19 28 
SOA_biogenic 0.1 0.1 0.1 0.1 17 9 16 24 
SOA_anthropogenic 0.1 0.05 0.1 0.1 23 11 23 34 
Sources of primary particles         
On-road gasoline 0.3 0.2 0.3 0.5 109 49 90 157 
Off-road gasoline  0.2 0.1 0.1 0.2 34 16 29 49 
On-road diesel 0.4 0.2 0.4 0.6 62 33 58 88 
Off-road diesel 1.0 1.0 1.0 1.4 93 53 83 126 
Wood smoke 1.4 0.5 0.9 1.8 310 105 205 437 
Meat cooking 1.1 0.4 0.8 1.6 115 46 86 174 
High sulfur fuel combustion 0.4 0.1 0.3 0.5 49 10 21 64 
Other anthropogenic 7.0 5.2 7.2 9.0 502 253 403 653 
 aConcentrations x1000; bMetals besides Cu, Fe, and Mn. 
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Table 3. Hazard ratios (HR) and 95% confidence interval (CI) for associations of PM2.5 and UF particles with Ischemic Heart Disease 

Mortality.  

 PM2.5 UF 
 IQR (µg/m3)  HRa (95% CI) p-value AIC IQR (ng/m3) HRa (95% CI) p-value AIC 
Pollutant         
Mass 9.6 1.18 (1.08, 1.30) <0.001 14011 969 1.10 (1.02, 1.18) 0.01 13896 
Cu 0.4b 1.09 (1.04, 1.15) <0.001 14015 0.02 1.06 (1.03, 1.09) <0.0001 13890 
Fe 0.2 1.06 (0.97, 1.16) 0.17 14023 0.8 1.03 (1.00, 1.06) <0.05 13899 
Mn 4.0b 1.06 (0.99, 1.13) 0.12 14023 0.03 1.00 (0.99, 1.01) 0.62 13902 
Nitrate  3.9 1.28 (1.16, 1.42) <0.0001 14003 - -  - 
EC 0.8 1.14 (1.05, 1.24) <0.01 14015 93 1.15 (1.06, 1.26) <0.001 13891 
OC 2.8 1.08 (0.99, 1.17) 0.07 14022 731 1.08 (1.01, 1.15) <0.05 13898 
Other Compounds 1.4 1.07 (0.99, 1.15) 0.08 14022 29 1.10 (1.04, 1.16) <0.001 13892 
Other Metalsc 0.5 1.08 (0.99, 1.18) 0.09 14022 17 1.13 (1.05, 1.21) <0.01 13892 
SOA biogenic 0.1 1.08 (1.00, 1.17) <0.05 14021 14 1.10 (1.02, 1.19) <0.01 13896 
SOA anthropogenic 0.1 1.23 (1.11, 1.36) <0.0001 14009 24 1.25 (1.13, 1.39) <0.001 13884 
Sources of primary particles         
On-road gasoline 0.3 1.12 (1.04, 1.22) <0.01 14017 108 1.12 (1.04, 1.22) <0.01 13894 
Off-road gasoline  0.2 1.14 (1.04, 1.24) <0.01 14016 33 1.14 (1.04, 1.24) <0.01 13894 
On-road diesel 0.4 1.13 (1.03, 1.23) <0.01 14018 56 1.13 (1.03, 1.24) <0.01 13895 
Off-road diesel 0.8 1.13 (1.05, 1.23) <0.05 14015 73 1.14 (1.05, 1.23) <0.01 13892 
Wood smoke 1.3 0.97 (0.90, 1.04) 0.38 14024 332 0.95 (0.89, 1.02) 0.20 13900 
Meat cooking 1.2 1.08 (1.00, 1.17) <0.05 14021 128 1.11 (1.03, 1.20) <0.01 13895 
High sulfur fuel combustion 0.4 1.08 (1.02, 1.13) <0.05 14017 54 1.08 (1.04, 1.12) <0.0001 13888 
Other anthropogenic 3.8 1.09 (1.00, 1.19) 0.05 14021 400 1.06 (1.01, 1.10) 0.01 13896 
aHRs stratified for age and race and adjusted for smoking status, smoking pack-years, adult second-hand smoke exposure, BMI, 

marital status, alcohol consumption, physical activity, menopausal status and HT use combined, family history of heart disease, 

hypertension medication/aspirin use, dietary fat, fiber and caloric intake. bConcentrations x1000. cMetals other than Cu, Fe, and Mn. 
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Table 4. Hazard ratios (HR) and 95% confidence interval (CI) for ischemic heart disease mortality for two-pollutant models of PM2.5 

nitrate with each of the other constituents.  

 PM2.5 constituent  PM2.5 nitrate  
Pollutant IQR (µg/m3) HRa (95% CI) p-value IQR (µg/m3) HRa (95% CI) p-value 
Mass 9.6 1.03 (0.91, 1.18) 0.61 3.9 1.25 (1.07, 1.45) <0.05 
Cu 0.4b 1.02 (0.94, 1.10) 0.67 3.9 1.26 (1.11, 1.44) <0.001 
Fe 0.2 0.92 (0.82, 1.03) 0.14 3.9 1.35 (1.19, 1.54) <0.0001 
Mn 4.0b 0.94 (0.85, 1.04) 0.23 3.9 1.34 (1.18, 1.53) <0.0001 
Nitrate  - - - 3.9 1.28 (1.16, 1.42) <0.0001 
EC 0.8 1.04 (0.94, 1.14) 0.49 3.9 1.25 (1.11, 1.42) <0.001 
OC 2.8 1.00 (0.91, 1.09) 0.94 3.9 1.29 (1.15, 1.44) <0.0001 
Other compounds 1.4 0.96 (0.87, 1.05) 0.34 3.9 1.33 (1.17, 1.51) <0.0001 
Other metalsc 0.5 0.93 (0.83, 1.04) 0.21 3.9 1.35 (1.18, 1.53) <0.0001 
SOA biogenic 0.1 0.95 (0.86, 1.05) 0.31 3.9 1.34 (1.17, 1.53) <0.0001 
SOA anthropogenic 0.1 0.97 (0.78, 1.21) 0.78 3.9 1.32 (1.05, 1.66) 0.02 
aHRs stratified for age and race and adjusted for smoking status, smoking pack-years, adult second-hand smoke exposure, BMI, 

marital status, alcohol consumption, physical activity, menopausal status and HT use combined, family history of heart disease, 

hypertension medication/aspirin use, dietary fat, fiber and caloric intake. bConcentrations x1000. cMetals other than Cu, Fe, and Mn. 
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Table 5. Hazard ratios (HR) and 95% confidence interval (CI) for ischemic heart disease mortality for two-pollutant  

models of anthropogenic UF secondary organic aerosols with each of the other constituents. 

 UF constituent UF SOA anthropogenic 
Pollutant IQR (ng/m3) HRa (95% CI) p-value IQR (ng/m3) HRa (95% CI) p-value 
Mass 969 1.03 (0.94, 1.12) 0.56 24 1.19 (1.08, 1.31) <0.001 
Cu 0.02 1.39 (1.05, 1.83) 0.02 24 1.16 (1.06, 1.28) 0.001 
Fe 0.8 1.01 (0.97, 1.06) 0.63 24 1.20 (1.09, 1.31) <0. 001 
Mn 0.03 1.00 (0.99, 1.01) 0.95 24 1.21 (1.11, 1.32) <0.0001 
EC 93 1.04 (0.93, 1.16) 0.52 24 1.18 (1.05, 1.32) 0.006 
OC 731 1.02 (0.95, 1.10) 0.61 24 1.20 (1.09, 1.31) <0.001 
Other compounds 29 1.06 (1.00, 1.13) 0.06 24 1.17 (1.07, 1.29) <0.001 
Other metalsb 17 1.07 (0.96, 1.18) 0.22 24 1.17 (1.06, 1.29) 0.002 
SOA biogenic 14 0.99 (0.92, 1.07) 0.82 24 1.22 (1.09, 1.36) <0.001 
SOA anthropogenic - - - 24 1.25 (1.13, 1.39)  < 0.001 
aHRs stratified for age and race and adjusted for smoking status, smoking pack-years, adult second-hand smoke exposure, BMI, 

marital status, alcohol consumption, physical activity, menopausal status and HT use combined, family history of heart disease, 

hypertension medication/aspirin use, dietary fat, fiber and caloric intake. bMetals other than Cu, Fe, and Mn.
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Figure Legends 

Figure 1. Modeled concentrations of PM2.5 nitrate (a), ultrafine anthropogenic secondary organic 

aerosols (b) and population in the Los Angeles Basin (c) using 4 k grids (the star in the figures 

indicates the site of the US EPA monitor). 

Figure 2. Association of PM2.5 Constituents and Sources with Ischemic Heart Disease Mortality 

(Hazard Ratios and 95% Confidence Intervals Using Interquartile Range). 
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