2013 AMENDMENT CYCLE 1 DRCOG CO AND PM₁₀ CONFORMITY DETERMINATION # FOR THE AMENDED FISCALLY CONSTRAINED 2035 REGIONAL TRANSPORTATION PLAN AND THE AMENDED 2012-2017 TRANSPORTATION IMPROVEMENT PROGRAM Public Hearing Draft July 17, 2013 Denver Regional Council of Governments 1290 Broadway, Suite 700 Denver, CO 80203 Preparation of this report has been financed in part through grants from the U.S. Department of Transportation, Federal Transit Administration, and Federal Highway Administration #### **ABSTRACT** TITLE: 2013 Amendment Cycle 1 DRCOG CO and PM₁₀ Conformity Determination for the Amended Fiscally Constrained 2035 Regional Transportation Plan and the Amended 2012-2017 **Transportation Improvement Program** **AUTHOR:** Denver Regional Council of Governments **SUBJECT:** Air quality conformity of the Denver region's long-range transportation plan and short-range improvement program **DATE:** Public Hearing Draft July 17, 2013 **SOURCE OF COPIES:** Public Information and Communications Office **DRCOG** 1290 Broadway, Suite 700 Denver, CO 80203 (303) 455-1000 **NUMBER OF PAGES:** ABSTRACT: Demonstration of the Denver region's timely implementation of adopted Transportation Control Measures and meeting of federally prescribed air pollution emissions tests. # **TABLE OF CONTENTS** | CHAPTER 1. | INTRODUCTION | 1 | |---------------------------|---|-----| | | irements | | | | ion | | | | | | | 1100033 | | | | CHAPTER 2. | IMPLEMENTATION OF CONTROL MEASURES | 7 | | | n Control Measures | | | | nentation Criteria | | | | | | | CHAPTER 3. | EMISSIONS TESTS | 11 | | | ription | | | | Cess | | | | ures | | | | e Measures | | | | t Results | | | | | | | APPENDIX A | TRANSPORTATION NETWORK ASSUMPTIONS | 28 | | | | | | APPENDIX B | TRANSPORTATION MODEL CALIBRATION DESCRIPTION | 47 | | APPENDIX C | PM ₁₀ STREET EMISSIONS REDUCTION COMMITMENTS | 63 | | APPENDIX C | FINI10 STREET EMISSIONS REDUCTION COMMITMENTS | 03 | | APPENDIX D | U.S. DEPARTMENT OF TRANSPORTATION | | | | CONFORMITY FINDING (TO BE PROVIDED) | 109 | | | | | | APPENDIX F | LIST OF ACRONYMS | 111 | | · · · · — · · · · · · · · | | | ## **LIST OF TABLES** | Table 1 | Conformity Emissions Tests | 12 | |----------|--|------| | Table 2 | Population and Employment Forecasts - DRCOG Region | 14 | | Table 3 | 2035 Population and Employment Estimates by County - DRCOG Region | 15 | | Table 4 | Proposed 2013 Cycle 1 Amendments to the Fiscally Constrained 2035 RTP Rapid Transit System | 20 | | Table 5 | Conformity Emissions Test Results | 26 | | | LIST OF FIGURES | | | | LIST OF FIGURES | | | Figure 1 | Transportation Management Area | 2 | | Figure 2 | Air Quality Attainment Maintenance Areas | . 13 | | Figure 3 | Fiscally Constrained 2035 Rapid Transit Rail Network Amendment Locations | . 19 | #### **CHAPTER 1. INTRODUCTION** #### **Federal Requirements** The Denver Regional Council of Governments (DRCOG) is the Metropolitan Planning Organization (MPO) for the Denver Transportation Management Area (TMA). Figure 1 displays the TMA that now includes southwestern Weld County as approved by the Governor on February 21, 2008. The MPO is required to show conformity of its fiscally constrained transportation plan and Transportation Improvement Program (TIP) with the State Implementation Plan (SIP) for air quality before these transportation plans and programs are adopted. This action is required under Section 176(c) of the Clean Air Act, as amended in 1990. Conformity to an air quality implementation plan is defined in the Clean Air Act as conformity to the implementation plan's purpose of eliminating or reducing the severity and number of violations of the National Ambient Air Quality Standards (NAAQS) and achieving expeditious attainment of such standards. In addition, activities may not cause or contribute to new violations of air quality standards, exacerbate existing violations, or interfere with the timely attainment of required emissions reductions towards attainment. For pollutants for which a region currently meets standards but was formerly in nonattainment, the applicable SIP may also be referred to as a maintenance plan, which demonstrates continued attainment of the standards. The U.S. Environmental Protection Agency (EPA) final transportation conformity rule is located at 40 CFR Part 93. To address revised standards and changes in conformity requirements, EPA has promulgated several amendments to the final rule in recent years. On July 1, 2004, EPA issued amendments which addressed: - Conformity regulations for the 8-hour ozone and fine particulate matter (PM_{2.5}) NAAQS. - The incorporation of existing federal guidance that is consistent with a U.S. Court of Appeals decision. - The streamlining and improving of EPA's existing transportation conformity rule¹. - ¹ 40 CFR Part 93 On March 10, 2006, EPA issued revisions addressing PM_{2.5} and PM₁₀ Hot-Spot Analyses in Project-Level Transportation Conformity Determinations. These project-level conformity analyses are the responsibility of project sponsors. This conformity finding covers plan and program level conformity only. On January 24, 2008 the U. S. Department of Transportation and EPA issued the transportation conformity rule, "Transportation Conformity Rule Amendments To Implement Provisions Contained in the 2005 Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU)." No changes to the process DRCOG uses in developing conformity documentation were necessary to comply with the transportation conformity rule. On March 8, 2012, EPA issued amendments which restructure several sections of the existing transportation conformity rule. Key elements of the amendments include: Restructuring two sections of the conformity rule, 40 CFR 93.109 and 93.119, so that the existing rule requirements clearly apply to areas designated for future new or revised - NAAQS, thus reducing the need to amend the transportation conformity rule merely to reference specific new NAAQS. - As a result of these changes, the conformity rule will apply to any new NAAQS that EPA establishes in the future. The EPA criteria and procedures vary according to the status of the State Air Quality Implementation Plans for individual pollutants. Transportation plans and programs must satisfy different criteria depending on whether the state has submitted a SIP revision, and whether the EPA has approved such a submittal. In addition to the emissions tests, the region must demonstrate timely implementation of adopted Transportation Control Measures (TCMs). The transportation community is held responsible for implementing TCMs to which the state committed in the various pollutant SIPs. #### **Current Situation** #### **Transportation Planning** The Metro Vision 2035 Plan is the long-range growth and development strategy for the Denver region. It integrates plans for growth and development, transportation, and environmental quality into a single comprehensive foundation for regional planning. Metro Vision calls for a balanced multimodal surface transportation system including rapid transit, a regional bus network, a regional beltway, bicycle and pedestrian facilities, and improvements to the existing roadway system. The 2035 Metro Vision Regional Transportation Plan (MVRTP) is the transportation plan that implements the transportation element of Metro Vision. The 2035 MVRTP contains an unconstrained vision plan, outlining the region's transportation needs, as well as the Fiscally Constrained 2035 RTP, which includes those projects that can be implemented given the anticipated level of funding. The 2035 MVRTP and Fiscally Constrained 2035 RTP were adopted on December 19, 2007 and last amended in February 2013. The 2012-2017 Transportation Improvement Program (TIP) adopted in March 2011, identifies transit, multimodal, and roadway projects to be funded with FY 2012 through FY 2015 federal funds. These projects are described in Chapter 3. The 2012-2017 TIP implements the Fiscally Constrained 2035 RTP. #### Air Quality Planning The status of air quality planning is important as it determines the emissions tests that must be met to find conformity. The latest revision to the carbon monoxide (CO) maintenance plan for Longmont established the emissions budget at 43 tons per day (tpd) for 2010 and beyond. On May 3, 2007, EPA found the revised CO budget of 43 tpd "adequate" for use in conformity determinations. EPA's approval of this latest Longmont CO Maintenance Plan revision became effective on October 16, 2007. The most recent revised CO maintenance plan for Denver, approved by the Colorado Air Quality Control Commission (AQCC) on December 15, 2005, established the emission budget at 1,625 tpd through 2020, and 1,600 tpd for 2021 and beyond. On May 3, 2007, EPA found the revised CO budget of 1,600 tpd adequate for use in conformity determinations for 2021 and beyond. EPA's approval of the revised Denver CO Maintenance Plans became effective on October 16, 2007. The State of Colorado submitted the latest Denver particulate matter equal to and less than 10 microns in aerodynamic diameter (PM₁₀) maintenance plan to the EPA in December 2005. EPA approved this latest PM₁₀ SIP Revision on January 7, 2008. This latest PM₁₀ Maintenance Plan revision contains the PM₁₀ budgets of 54 tpd and 55 tpd for the years 2015 through 2021, and 2022 and beyond, respectively, as well as the wintertime NOx budgets of 70 tpd and 56 tpd for the years 2015 through 2021, and 2022 and beyond, respectively. On December 14, 2012, EPA strengthened the annual $PM_{2.5}$ standard from 15 to 12 micrograms per cubic meter (μ g/m³) and retained the 24-hour $PM_{2.5}$ standard of 35 μ g/m³. The agency also retained the existing standard for PM_{10} . EPA anticipates making initial
attainment/nonattainment designations by December 2014, with those designations likely becoming effective in early 2015. Based on the existing $PM_{2.5}$ monitor data, the Denver region does not violate either the new annual $PM_{2.5}$ standard, or the existing 24-hour $PM_{2.5}$ standard. #### Air Quality Situation The region has been redesignated as attainment maintenance for CO and PM₁₀. The pollutants and their violation status for the Denver region include: **Carbon Monoxide** – A violation of the carbon monoxide standard occurs when a monitoring station shows more than one exceedance per year of the 8-hour (9 parts per million (ppm)) or 1-hour (35 ppm) standard. The carbon monoxide standard was last violated in 1995. There has been no violation for CO in the Denver region since. $PM_{2.5}$ – An exceedance of the $PM_{2.5}$ standard occurs when a monitoring station exceeds the annual average of 12 μg/m³ or the 24-hour average of 35 μg/m³. A violation of the 24-hour standard occurs only if the 3-year average of the 98th percentile of all 24 hour readings at a monitor exceeds 35 μg/m³ or the 3-year average of the annual averages exceeds 12 μg/m³. The Denver metropolitan area has never violated either of the two standards. PM_{10} – An exceedance of the PM_{10} standard occurs when a monitoring station exceeds a 24-hour average of 150 μ g/m³. If the 24-hour standard is exceeded more than three times over a three-year period, it is a violation. The PM_{10} standard was last violated on three days in 1993. There has been no violation for PM_{10} in the Denver region since. **1-Hour Ozone** – EPA made an adequacy determination of the proposed 8-hour ozone motor vehicle emissions budgets for conformity and the new budgets became effective on March 19, 2010. The 1-hour ozone budgets are no longer used for transportation conformity purposes. #### **Process** #### Agency Roles The Conformity SIP was developed by the AQCC and adopted in 1998. It formally defines the process for finding conformity. In November / December 1998, a memorandum of agreement (MOA) was signed by the CDPHE and DRCOG for the purpose of defining the specific roles and responsibilities in conformity evaluations and findings. The EPA approved the Conformity SIP on September 21, 2001 (66FR48561). This makes the Conformity SIP federally enforceable. DRCOG, as the MPO, and the Federal Transit Administration (FTA) and Federal Highway Administration (FHWA), as representatives of the U.S. Department of Transportation, are charged with determining conformity for the Denver TMA. The development of the Fiscally Constrained RTP and TIP conformity determination has been a cooperative process between the RAQC, the Air Pollution Control Division (APCD) of CDPHE, the EPA, the FHWA, the FTA, CDOT, the Regional Transportation District (RTD), and DRCOG. #### Public Participation Public participation was encouraged throughout the development of the 2035 MVRTP, including the Fiscally Constrained 2035 RTP, the 2012-2017 TIP, and this conformity determination. Public hearings (and associated 30-day comment periods) were held before the DRCOG Board for the: - 2035 Metro Vision Regional Transportation Plan and its original conformity document on December 5, 2007. - 2035 MVRTP 2008 Cycle 1 amendments and conformity document on July 16, 2008. - 2035 MVRTP 2008 Cycle 2 amendments and conformity document on December 17, 2008. - 2035 MVRTP 2009 Cycle 1 amendments and conformity document on July 15, 2009. - 2035 MVRTP 2009 Cycle 2 amendments and conformity document on December 16, 2009. - 2035 MVRTP Update and conformity documents on December 15, 2010. - 2012-2017 TIP and its conformity document on February 16, 2011. - 2035 MVRTP 2011 Cycle 1 amendments and conformity document on July 20, 2011. - 2035 MVRTP 2012 Cycle 2 amendments and conformity document on January 16, 2013. - 2035 MVRTP 2013 Cycle 1 amendments and conformity document on July 17, 2013. Summaries of testimony received at public hearings are available at the DRCOG office. Members of the public are also encouraged to provide input to their local elected officials and government staff who work closely with DRCOG staff on these processes. #### CHAPTER 2. IMPLEMENTATION OF CONTROL MEASURES #### **Transportation Control Measures** The transportation plan and program must provide for the timely implementation of adopted Transportation Control Measures (TCM) from the applicable implementation plan. The state air quality implementation plan identified a number of TCMs that were funded and completed in past TIPs. The implementation of rail transit was a substantial TCM, first defined in the 1979 Carbon Monoxide SIP and the 1982 Ozone SIP. The region's first segment of light rail, which opened in October 1994, provides service from the downtown area south to Broadway and I-25. The first extension of this service, the southwest corridor, from Broadway and I-25 to Mineral Avenue along Santa Fe Boulevard, opened in July 2000. An extension of light rail service into the Platte Valley opened in April 2002. Funding came from a private-public partnership that included DRCOG, RTD, the City and County of Denver, and the private sector. The southeast corridor light rail transit was completed in November 2006. It was the last remaining partially completed TCM. It includes light rail service along I-25 from Broadway south to Lincoln Avenue, as well as a light rail spur along I-225 from I-25 to Parker Road. With the completion of the southeast corridor, the region has 35 miles of light rail transit serving suburban and urban commuters. Beyond the SIP measures, the Fiscally Constrained 2035 RTP and 2012-2017 TIP continue funding for transportation demand management (TDM) actions through: - The Regional TDM Program. - A separate TDM pool program that supports localized efforts, including projects implemented by transportation management organizations (TMOs). The 2012-2017 TIP also provides funding for the RTD FasTracks program, local bus service initiatives, bicycle/pedestrian projects, and transit station area master plans and urban center studies. #### **Timely Implementation Criteria** The transportation plan must meet two conditions to demonstrate timely implementation of TCMs: • The transportation plan, in describing the envisioned future transportation system, provides for the timely completion or implementation of all TCMs in the applicable implementation plan which are eligible for funding under Title 23 USC of the Federal Transit Act, consistent with the schedule included in the applicable implementation plan. The Fiscally Constrained 2035 RTP identifies the metropolitan transportation system of freeways, managed lanes (HOV/HOT lanes) transit facilities, travel demand actions, and operational improvements. It also contains goals, policies, and action strategies to guide the implementation of the plan. There are no remaining TCM's to be implemented. The Denver Regional Element of the State Air Quality Implementation Plan and the Fiscally Constrained 2035 RTP are consistent documents. • Nothing in the transportation plan interferes with the implementation of any TCM in the applicable implementation plan. The DRCOG committees and Board review the goals, policies, recommendations, and improvements identified in the Fiscally Constrained RTP. No conflicts exist with any specific requirements in commitments of the adopted SIP. The Fiscally Constrained RTP does not prohibit implementation of any SIP TCM, nor does it make it impossible to implement any SIP TCM. TCMs contained in the SIP, but not directly related to the Fiscally Constrained RTP, given their non-facility planning nature, include the federal Motor Vehicle Emissions Control Program, Inspection and Maintenance Program, stationary source controls, display signs instructing motorists to turn off engines, warranty enforcement, and gasoline high altitude emissions research. The Fiscally Constrained 2035 RTP contains no policies that inhibit the implementation of these measures. For a TIP to provide for the timely implementation of TCMs, three criteria must be satisfied: • TCMs, which are eligible for funding under Title 23 USC of the Federal Transit Act, are on or ahead of the schedule established in the applicable implementation plan, or, if such TCMs are behind schedule, the MPO and DOT have determined the past obstacles to implementation have been identified and overcome. There are no TCMs remaining from the CO or PM₁₀ SIPs. If TCMs have previously been programmed, but funds have not been obligated and the TCMs are behind schedule, then the TIP cannot be found to conform if the funds intended for these TCMs are reallocated to projects in the TIP other than TCMs. This situation has not occurred. Programmed funds for TCMs have been obligated. Nothing in the TIP may interfere with implementation of any TCM in the applicable implementation plan. The DRCOG committees and Board review the projects identified in the 2012-2017 TIP. No conflicts exist with any specific requirements or commitments of the adopted SIP. The TIP does not prohibit implementation of any SIP TCM, nor does it make it impossible to implement any SIP TCM. (intentionally blank) #### **CHAPTER 3. EMISSIONS TESTS** #### **General Description** The transportation plan and program must pass a series of emissions tests to demonstrate conformity. These emissions tests relate to the pollutants and their precursors for which the Denver region is designated as attainment-maintenance of the NAAQS. These pollutants and precursors include: - Carbon monoxide (CO) - PM₁₀ - Nitrogen oxides (NO_x) as a precursor for PM₁₀ (wintertime estimate) Each pollutant and precursor in specific geographic areas must pass a number of tests. The plan and program must respect the motor vehicle emissions budget in the applicable SIP or SIP submittal. Satisfying these tests involves demonstrating that relevant emissions in
future years are less than or equal to the emissions budget established in the applicable maintenance plan. As required by 40 CFR 93.118, consistency with the motor vehicle emissions budget(s) must be demonstrated for each year for which the applicable implementation plan specifically establishes motor vehicle emissions budget(s), for the attainment year (if it is within the timeframe of the transportation plan), for the last year of the transportation plan's forecast period, and for any intermediate years as necessary so that the years for which consistency is demonstrated by analysis are no more than ten years apart. In addition, when a maintenance plan has been submitted, emissions must be less than or equal to the motor vehicle emissions budget(s) established for the last year of the maintenance plan and any year for which the maintenance plan establishes budgets. Applying these tests for the prescribed time periods for each of the pollutants results in 22 emissions tests as listed in Table 1². The analysis areas are shown in Figure 2. ² Transportation model runs represent the beginning of a calendar year. Test dates listed in Table 1 refer to model run dates. Table 1 **Conformity Emissions Tests** | Pollutant and Area | Tests | |---|---| | | 2013 staging ≤ Budget of 1,625 tpd ⁴ | | | 2015 staging ≤ Budget of 1,625 tpd | | Carbon Monoxide in Denver | 2020 staging ≤ Budget of 1,625 tpd | | Attainment Maintenance Area ³ | 2021 staging ≤ Budget of 1,600 tpd ^{4, 5} | | | 2030 staging ≤ Budget of 1,600 tpd | | | Fiscally Constrained 2035 RTP ≤ Budget of 1,600 tpd | | | 2010 staging ≤ Budget of 43 tpd ⁴ | | Carban Manayida in Langmant | 2015 staging ≤ Budget of 43 tpd | | Carbon Monoxide in Longmont
Attainment Maintenance Area ³ | 2020 staging ≤ Budget of 43 tpd ⁵ | | Attailment Waintenance Area | 2030 staging ≤ Budget of 43 tpd | | | Fiscally Constrained 2035 RTP ≤ Budget of 43 tpd | | | 2015 staging ≤ Budget of 54 tpd ⁶ | | | 2020 staging ≤ Budget of 54 tpd | | PM ₁₀ | 2022 staging ≤ Budget of 55 tpd ^{4,5} | | | 2030 staging ≤ Budget of 55 tpd | | | Fiscally Constrained 2035 RTP ≤ Budget of 55 tpd | | | 2015 staging ≤ Budget of 70 tpd | | | 2020 staging ≤ Budget of 70 tpd | | NO _x associated with PM ₁₀ | 2022 staging ≤ Budget of 56 tpd ^{4, 5} | | | 2030 staging ≤ Budget of 56 tpd | | | Fiscally Constrained 2035 RTP ≤ Budget of 56 tpd | ³ EPA approval is effective October 16, 2007. ⁴ This is the year the budget was established in the maintenance plan. ⁵ EPA adequacy finding effective June 28, 2007. ⁶ EPA approval of PM₁₀ Maintenance Plan, effective January 7, 2008. #### **Technical Process** The technical process used to estimate future pollutant emission levels is based on the latest planning assumptions in effect at the time of this conformity determination. Assumptions behind the analysis were derived from estimates of current and future population, employment, travel, and congestion most recently developed by DRCOG. Information concerning vehicle miles traveled and operating speeds were updated as part of this conformity finding process. The above-mentioned factors were used with the EPA emission model (MOVES) to estimate emissions. #### **Demographic Assumptions** The population forecast for the full DRCOG region in 2035 is 4,037,940. This is an increase of 41 percent over the year 2010 estimated population of 2,865,246. Employment is forecast to be 2,326,777 in 2035 compared to the year 2010 estimate of 1,678,799, an increase of 39 percent. Growth in population and employment will be the principal factor for the increased demand for travel on the region's transportation facilities and services. Table 2 shows the latest forecasts of population and employment for 2010, 2015, 2025, and 2035 for the DRCOG region. Table 3 lists 2010 and 2035 population and employment estimates by each of the nine counties, as well as the southwest portion of Weld County within the DRCOG region. Table 2 Population and Employment Forecasts - DRCOG Region | DRCOG Region 2010 | | 2015 | 2025 | 2035 | |-------------------|-----------|-----------|-----------|-----------| | Population | 2,865,246 | 3,085,170 | 3,595,584 | 4,037,940 | | Employment | 1,678,799 | 1,864,005 | 2,107,161 | 2,326,777 | Table 3 2035 Population and Employment Estimates by County - DRCOG Region | County | Population | | Emplo | yment | |--------------------|------------|-----------|-----------|-----------| | County | 2010 | 2035 | 2010 | 2035 | | Adams County | 455,155 | 728,028 | 204,531 | 331,702 | | Arapahoe County | 563,874 | 787,406 | 336,956 | 442,279 | | Boulder County | 302,198 | 373,301 | 188,833 | 198,895 | | Broomfield County | 51,697 | 87,693 | 37,401 | 76,880 | | Clear Creek County | 10,089 | 12,943 | 3,718 | 4,664 | | Denver County | 596,720 | 760,726 | 512,252 | 689,934 | | Douglas County | 283,811 | 482,295 | 111,259 | 205,705 | | Gilpin County | 5,345 | 7,122 | 5,780 | 6,442 | | Jefferson County | 548,793 | 691,254 | 266,007 | 343,730 | | SW Weld in DRCOG | 47,564 | 107,172 | 12,062 | 26,545 | | Full DRCOG Region | 2,865,246 | 4,037,940 | 1,678,799 | 2,326,777 | #### **Transportation Assumptions** In order to complete the emissions tests, the 2010, 2015, 2025, and 2035 transportation networks must first be defined. DRCOG's Fiscally Constrained 2035 RTP specifies financially constrained highway and transit system improvements and resulting networks to be completed by the year 2035. The detailed list of improvement projects by completion year staging for 2013 Cycle 1 is displayed in Appendix A. The 2012-2017 TIP identifies funding to complete a number of regionally significant projects on the designated regional roadway and rapid transit system that are also contained in the Fiscally Constrained 2035 RTP, listed below: - US-85 from Cook Ranch Road to Meadows Parkway: widen roadway to four lanes. - I-25 from US-36 to 120th Avenue: add two HOT lanes. - I-25 from RidgeGate Pkwy to County Line South Ramps: widen roadway to 8 lanes. - West Corridor, Denver Union Station to Jefferson County Government Center: new light rail, stations, park-n-Rides. - Gold Line, Denver Union Station to Ward Road: new light rail, stations, park-n-Rides. - I-225 Corridor, Parker Road to Smith Road: new light rail, stations, parking. - Northwest Rail, Denver Union Station to Westminster (71st Ave Station): new rail, stations, parking. - East Corridor, Denver Union Station to Denver International Airport: new rail, stations, and park-n-Rides. - Denver Union Station: intermodal center. - 120th Avenue Connection over US-36: build new six lane road. - I-25 from Santa Fe to Alameda: interchange reconstruction. - US-36 from the Table Mesa Park-n-Ride to the I-25 Express Lanes: add two HOT lanes, enhancements for bus rapid transit (BRT). - I-225 from Parker Road to Mississippi Avenue: widen roadway to six lanes. The 2012-2017 TIP includes many other projects that will help to reduce emissions associated with ozone: - Transit operating funds and bus purchases - Bicycle and pedestrian facilities - Travel Demand Management (TDM) programs - Intelligent Transportation Systems (ITS) infrastructure - Traffic signal systems and coordination - Master plans for areas around transit stations and urban centers Other representative regionally significant projects in the Fiscally Constrained 2035 RTP using federal and state resources, in addition to those listed above include: - Wadsworth Boulevard (SH-121) from 36th Avenue to 46th Avenue: widen roadway to six lanes. - Wadsworth Parkway (SH-121) from 92nd Avenue to SH-128/120th Avenue: widen roadway to six lanes. - 104th Avenue from Grand View Ponds to US-85: widen roadway to four lanes. - I-70 from Brighton Boulevard to York Street: roadway reconstruction and interchanges. - I-70 from I-270 to Havana Street: widen roadway to ten lanes. - Hampden Avenue (US-285) from Colorado to I-25: widen roadway to six lanes. - Hampden Avenue (SH-30) from Dayton Street to Havana Street: widen roadway to six lanes. - I-270 from Vasquez to Quebec Street: widen roadway to six lanes. - US-36 at Wadsworth Boulevard: interchange reconstruction. - I-25 from SH-66 to WCR 38: add two HOT lanes. - US-85 from Louviers to MP191.75 and from Sedalia (SH-67) to Meadows Pkwy: widen to 4 lanes. - North Metro Rail Line, Denver Union Station to 72nd Avenue Station: new rail, stations, parking. - Southeast Rail Extension, Lincoln Avenue to RidgeGate Parkway: new rail, stations, parking. Regional highway projects in the Fiscally Constrained RTP using locally-derived funds include: - New interchanges at I-25/Douglas Lane and at US-85/North Meadows Drive in Castle Rock. - E-470 from I-25/C-470 to I-25/Northwest Parkway: widen to eight/six lanes, build five new interchanges. - New interchange at I-70/Harvest Mile Road. - Peña Boulevard from I-70 to Jackson Gap Street: widen roadway to six lanes. - Jefferson Parkway from SH-93 to SH-128: new four-lane tollroad, plus 3 partial interchanges. The proposed 2013 Cycle 1 project amendments to the Fiscally Constrained 2035 RTP roadway network are described in Table 4. All changes (e.g. staging year updates) are depicted in Appendix A. The base 2010 rapid transit network includes the existing Central, Southwest, Southeast, and Central Platte Valley rail lines. It also includes the I-25 HOV/Tolled Express Lanes; HOV lanes on Santa Fe Drive and US 36; and bus lanes on Broadway and Lincoln. The remaining rapid transit system to be completed by 2035 is shown in Figure 3. The 2013 Cycle 1 amendment for FasTracks will advance the National Western Stock Show to 72nd North Metro Rail segment from the 2035 stage to the 2025 stage. The amendment will also add a new station (Aviation Station) and park-n-Ride lot to the East Rail Line at approximately Pena Boulevard and 61st Avenue. The proposed 2013 Cycle 1 project and
operational amendments to the Fiscally Constrained 2035 RTP are described in Table 4. Figure 3 Fiscally Constrained 2035 Rapid Transit Rail Network Amendment Locations Table 4 Proposed 2013 Cycle 1 Amendments to the Fiscally Constrained 2035 RTP Rapid Transit System | FasTracks
Components | Current RTP
Project Description | Type of Change to the FC-2035-RTP | Proposed Model
Network Staging | |--------------------------|---|---|-----------------------------------| | North Metro
Rail Line | Denver Union Station to 72nd Ave | Change network staging of segment
from National Western Stock Show Station
to 72nd Ave Station
from 2025-2035 to 2015-2024 | 2015 - 2024 | | East Rail Line | Denver Union Station to
Denver International Airport | Add new Park-and-Ride Station (Aviation Station) at
Pena Boulevard/61 st Avenue | 2015 - 2024 | DRCOG's regional travel model was used to perform the travel forecasting. A summary description of the model is included in Appendix B. A more detailed description is documented in the DRCOG *Focus* Transportation Model Documentation and in a metadata report. Additional documentation is available on the assumptions and operation of the socio-economic model. These reports and papers are available at the DRCOG offices. This model includes a number of assumptions, which are supported by current regional experience. One set of modeling assumptions concerns transit operating policies. The model assumes that RTD will keep transit fares constant in current dollars. This is a logical assumption as RTD has an adopted policy of increasing fares in line with increases in the Consumer Price Index. Modeled fares for proposed new services are based on the most similar existing services. The model assumes that RTD would continue with its current approach in setting service levels for various areas of the region. RTD last increased its fares in January 2011. The model assumes that the Northwest Parkway Authority and the E-470 Authority will continue to charge tolls on their facilities on a per-mile cost basis in constant dollars similar to current charges (16 cents per mile in 1996 dollars). The proposed Jefferson Parkway is assumed to have comparable tolls. Parking costs in downtown Denver were varied using the Denver parking cost model, which uses employment density and estimates of parking supply as variables. Parking costs were established outside the Denver Central Business District by surveying current parking costs for work and non-work trips, and assuming that these would remain constant over time. 20 Appendix A contains the complete list of modeled transportation improvement projects within the DRCOG regional travel model. #### Air Quality Modeling Assumptions The APCD of the CDPHE estimates air pollution emissions using MOVES. The conformity analysis began in March 2013after amendment proposals were submitted for inclusion. The models and assumptions used by APCD in the conformity analysis were consistent with those used in the development of the CO and PM₁₀ SIPs. The technical support documentation for each of these SIPs is available at http://apcd.state.co.us/tech.aspx. #### **Control Measures** There are several actions or projects described or assumed in the SIPs that are federally enforceable control measures. PM₁₀ street maintenance actions are one of the control measures. #### PM₁₀ Street Maintenance Actions DRCOG must demonstrate that future year estimates of PM_{10} emissions will be less than or equal to the maintenance PM_{10} emissions budgets to show conformity with the PM_{10} SIP. The mobile source PM_{10} budgets are 54 tons per day (tpd) through 2021, and 55 tpd for 2022 and beyond. AQCC Regulation 16 is essential to the control of mobile source emissions. Adopted on August 15, 1991, the regulation has undergone several revisions, with the latest occurring on April 19, 2001. Re-entrained road dust in the Denver metropolitan area from winter street sanding causes between 40 and 60 percent of PM₁₀ emissions. It is the single largest contributor to PM₁₀ emissions⁷. Regulation 16 targets street sanding and sweeping practices. _ $^{^7}$ In June 1998, the Colorado Department of Transportation, with technical assistance of Midwest Research Institute, concluded a study of the role of sand in PM_{10} emissions. Findings from this study demonstrated that the percentage of the total PM_{10} emissions from road traffic that consist of road dust increases from about 50 percent to as much as 80 or 90 percent during the high impact 24-hour period following road sanding. Previously, the PM_{10} emissions analysis had been using a sand share of 33.8 percent or about half of the recent study findings. Increasing the role of sand in producing PM_{10} emission increases the benefits of reduced street sanding. Over the past few years, local governments, CDOT, RTD and the E-470 Public Highway Authority have made major strides to reduce PM_{10} emissions from street sand by reducing the amount of sand spread on the streets during snow storms by about 40 percent from 1989 street sanding levels and increasing the sweeping of sanded streets within four days of each snow storm from none to 40 percent. Since October 1, 1991, street sanding material providers have been required to meet set standards for the sanding materials they provide to state, city, and county governments. The regulation applies to both new and recycled sanding materials. All materials must meet requirements regulating their angularity, percent fines, and degree of durability. The burden of material testing to meet these standards falls on the private companies supplying the materials. An independent laboratory must conduct all testing. Reductions in the applied amount of sanding material are also set for all of the local governments and street maintaining agencies (CDOT, RTD, E-470 Authority, Northwest Parkway Authority) within the nonattainment area. A reduction of 30 percent from their established baseline amount is mandated. Baseline amounts are typically based on 1989 practices. In the defined "foothills" area, a 20 percent reduction from the established baseline is mandated. In addition to the above requirements, there are specific requirements to the City and County of Denver and CDOT: - The City and County of Denver shall achieve a 72% reduction within the Denver central business district (CBD). The CBD is defined as the area bounded by and inclusive of Colfax Avenue, Speer Boulevard, Wynkoop Street, 20th Street, and Broadway. - CDOT shall achieve a 54% reduction from Interstate 25 and its entrance/exit ramps between 6th Avenue and University Boulevard. - The City and County of Denver and CDOT shall achieve a 50% reduction on roadways within the area bounded by, and including, Federal Boulevard, Downing Street, 38th Avenue, and Louisiana Avenue. Records and reports of the reductions and practices used must be submitted yearly to the APCD and the RAQC. Finally, Regulation 16 sets rules for street sweeping to achieve reductions in PM₁₀ emissions. These rules include time requirements for sweeping after deployments of street sanding materials, definition of the sweeping techniques to be used, and targeted areas for increased sweeping. Record keeping and reporting of dates, equipment use, and areas swept are required under these rules. Preliminary estimates of 2035 emissions indicated that PM₁₀ emissions would be higher than the 55 tpd emissions budget after accounting for the impacts of Regulation 16. Because of this anticipated exceedance of the PM₁₀ emissions budget, local governments and road agencies were asked to provide commitments to further reduce emissions as part of the RTP update. These commitments are for additional reductions in sand application and an increase in street sweeping activities, above and beyond Regulation 16, to further reduce mobile source PM₁₀ emissions. In 2010, 40 agencies submitted their commitments to DRCOG. Actions that can be employed to achieve PM₁₀ reductions include: - Reducing the total amount of sanding materials used. - Using anti-icers, deicers, and other sand substitutes in place of sanding materials. - Street sweeping within four days of each snow event. The local governments and agencies have decided on the combination of the above actions to meet their commitments. The street sanding and sweeping commitments made by local governments and road agencies in 2010 are detailed in Appendix C. With these commitments, the mobile source PM_{10} emissions estimate shows emission levels of 43 tpd in 2035. This is less than the mobile source PM_{10} emission budget of 55 tpd. The Fiscally Constrained 2035 RTP identifies approximately \$50 million over a 24-year period in CMAQ and local match funds for air quality programs and purchases. Some of this \$50 million will fund additional sweeper and deicer equipment. The PM₁₀ maintenance plan also identifies a test whereby the region must demonstrate that transportation construction emissions do not exceed those assumed in the emissions budgets. The budgets were established on the assumption that all of the facilities in the Fiscally Constrained 2020 RTP, the RTP in effect at the time the PM₁₀ SIP was adopted, would be constructed at rates of 11.4 lane-miles per year for freeways and 62.7 lane-miles per year for major regional and principal arterials. To pass the test, the rate of lane-mile construction proposed in the Fiscally Constrained 2035 RTP must be less than or equal to the rate of construction in the Fiscally Constrained 2020 RTP. The rate of construction for the Fiscally Constrained 2035 RTP is about 6.7 lane-miles per year for freeways/tollways and 33.3 lane-miles
per year for major regional arterials and principal arterials. Thus, the construction emissions of the Fiscally Constrained 2035 RTP are less than the construction emissions assumed in the budgets and the test is passed. #### **Mobile Source Measures** The regional emissions analysis does not reflect the air quality benefits of such travel demand management programs as DRCOG's Regional TDM Program, Teleworking, EcoPass, and other transportation demand management actions. In addition, other programs whose benefits are more difficult to ascertain are not fully incorporated into the model. Examples of such programs include compressed workweeks and programs initiated after 1998. The model does include emissions reduction benefits created by the regional Traffic Signal System Improvement Program (TSSIP), which is a program in the TIP. The goal of this program is to ensure that the region's traffic signals operate in a safe manner that makes the most efficient use of arterial street capacity. The efficiency objectives include: - Minimizing vehicle stops. - Minimizing travel delay. - Minimizing disruption caused by malfunctioning equipment. The major components of the TSSIP include: - A capital improvement program that provides intersection control equipment and installs communications links to allow signals to operate as a system. - A program to retime signals in a coordinated fashion to improve corridor travel time through accomplishment of the above objectives. #### **Emission Test Results** The results of emissions tests are reported in Table 5. The emissions estimates were generated by APCD using transportation inputs and emissions models. The test results do not indicate any failures in the horizon years of the program or plan that would lead to a finding of non-conformity. A qualitative test is required for years prior to 2013 in Denver for carbon monoxide. The regional carbon monoxide estimate for 2005 is 1,517 tpd, which is less than the CO SIP estimate of 1,614 tpd in 2006. The 2013 carbon monoxide estimate is 1039.4 tpd, which is below the budget of 1,625 tpd. The carbon monoxide emissions for years prior to 2013 should then be lower than the budget. No other factors (such as stationary sources) are expected to cause a violation. Some questions were raised regarding the increase in emissions between 2010 and 2015 for the Longmont Maintenance Area. The following explanation was provided by staff of the State APCD of the CDPHE: Most of the reduction in CO due to fleet turnover under winter conditions occurs in start emissions. These emissions are in the off-net portion of the MOVES output and are not strictly VMT related. Without having a better way of apportioning off-net emissions from Boulder County to the Longmont nonattainment area, VMT was used. This may have imposed a small increase in the 2015 emission estimate, and Longmont emissions increased in 2015 while Denver emissions declined. The methodology and emission factors were the same for both areas. Qualitative assessments for years prior to 2015 are required for PM_{10} . The region is currently significantly below the federal health standard. The 2015 estimate for direct PM_{10} is 34.3 tpd and 67.7 tpd for NOx associated with PM_{10} , both of these estimates are below the 54 tpd direct PM_{10} and 70 tpd NO_x budgets. No violation is expected for years prior to 2015. The emissions test results for the Denver region are below all of the budgets listed in Table 1. Table 5 **Conformity Emissions Test Results** | Pollutant and Area | Test | Result <budget (tons="" day)<="" per="" th=""><th>Pass/Fail</th></budget> | Pass/Fail | |---|--|---|-----------| | | 2013 Staging ≤ Budget ⁸ | 1039.4 < 1,625 | Pass | | | 2015 Staging ≤ Budget | 1037.0 < 1,625 | Pass | | Carbon Monoxide in Denver | 2020 Staging ≤ Budget ⁹ | 965.0 < 1,625 | Pass | | Attainment Maintenance Area | 2021 Staging ≤ Budget ¹⁰ | 950.6 < 1,600 | Pass | | | 2030 Staging ≤ Budget ¹¹ | 925.9 < 1,600 | Pass | | | Fiscally Constrained 2035 RTP ≤ Budget | 958.8 < 1,600 | Pass | | | 2010 Staging ≤ Budget | 20.0 < 43 | Pass | | Control Managida in Language | 2015 Staging ≤ Budget | 21.6 < 43 | Pass | | Carbon Monoxide in Longmont Attainment Maintenance Area | 2020 Staging ≤ Budget ¹² | 20.2 < 43 | Pass | | | 2030 Staging ≤ Budget ¹³ | 19.6 < 43 | Pass | | | Fiscally Constrained 2035 RTP ≤ Budget | 20.3 < 43 | Pass | | | 2015 Staging ≤ Budget | 34.3 < 54 | Pass | | | 2020 Staging ≤ Budget ¹⁴ | 36.6 < 54 | Pass | | PM ₁₀ | 2022 Staging ≤ Budget ¹⁵ | 37.5 < 55 | Pass | | | 2030 Staging ≤ Budget ¹⁶ | 41.0 < 55 | Pass | | | Fiscally Constrained 2035 RTP ≤ Budget | 43.1 < 55 | Pass | | | 2015 Staging ≤ Budget | 67.7 < 70 | Pass | | | 2020 Staging ≤ Budget ¹⁷ | 54.3 < 70 | Pass | | NO _x associated with PM ₁₀ | 2022 Staging ≤ Budget ¹⁸ | 48.9 < 56 | Pass | | | 2030 Staging ≤ Budget ¹⁹ | 37.2 < 56 | Pass | | | Fiscally Constrained 2035 RTP ≤ Budget | 33.6 < 56 | Pass | ⁸ 2013 derived from interpolation of 2010 estimate of 1043.1 tpd and 2015 estimate of 1037.0 tpd. ²⁰¹³ derived from interpolation of 2015 estimate of 1043.1 tpd and 2015 estimate of 1037.0 tpd. 2020 derived from interpolation of 2015 estimate of 1037.0 tpd and 2025 estimate of 893.1 tpd. 2021 derived from interpolation of 2015 estimate of 1037.0 tpd and 2025 estimate of 893.1 tpd. ¹¹ 2030 derived from interpolation of 2015 estimate of 1893.1 tpd and 2035 estimate of 958.8 tpd. ¹² 2020 derived from interpolation of 2015 estimate of 21.6 tpd and 2025 estimate of 18.8 tpd. ¹³ 2030 derived from interpolation of 2015 estimate of 18.8 tpd and 2035 estimate of 20.3 tpd. ¹⁴ 2020 derived from interpolation of 2015 estimate of 34.3 tpd and 2025 estimate of 38.9 tpd. ¹⁵ 2022 derived from interpolation of 2015 estimate of 34.3 tpd and 2025 estimate of 38.9 tpd. ¹⁶ 2030 derived from interpolation of 2025 estimate of 38.9 tpd and 2035 estimate of 43.1 tpd. ¹⁷ 2020 derived from interpolation of 2015 estimate of 67.7 tpd and 2025 estimate of 40.9 tpd. ¹⁸ 2022 derived from interpolation of 2015 estimate of 67.7 tpd and 2025 estimate of 40.9 tpd. ¹⁹ 2030 derived from interpolation of 2025 estimate of 40.9 tpd and 2035 estimate of 33.6 tpd. (intentionally blank) ## **APPENDIX A** ## TRANSPORTATION NETWORK ASSUMPTIONS (intentionally blank) # Model Network Improvements Included in the 2013 Cycle 1 Air Quality Conformity Assessment for the Fiscally Constrained 2035 RTP and the 2012-2017 TIP By Staging Periods | TIP-ID | Facility Name | Start At | End At | Improvement | Base
Lanes | Future
Lanes | Classification | |--------------|------------------------|-------------------|----------------------|----------------------------|---------------|-----------------|----------------| | Adams Co | ounty | | | | | | | | Vetwork Stag | ging: 2015 (2012-2014) | | | | | | | | | Washington Street | 60th Avenue | 68th Ave | Add through lane(s) | 2 | 4 | Principal | | Network Stag | ging: 2025 (2015-2024) | | | | | | | | | 58th Avenue | Washington Street | York Street | Add through lane(s) | 2 | 4 | Principal | | | Pecos Street | 52nd Avenue | I-76 | Add through lane(s) | 2 | 4 | Principal | | | Washington Street | 52nd Avenue | 58th Avenue | Add through lane(s) | 2 | 4 | Principal | | | York Street | 160th Ave (SH-7) | 168th Ave | Add through lane(s) | 2 | 4 | Principal | | Arapahoe | County | | | | | | | | Vetwork Stag | ging: 2025 (2015-2024) | | | | | | | | | Broncos Pkwy | Jordan Rd | Parker Rd | Add through lane(s) | 4 | 6 | Principal | | | Easter Avenue | Havana St | Peoria St | Add through lane(s) | 4 | 6 | Principal | | | Gun Club Road | Quincy Ave | 1.5 Miles South | Add through lane(s) | 2 | 6 | Principal | | | Hampden Avenue | Picadilly Rd | Gun Club Rd | Add through lane(s) | 2 | 4 | Principal | | | Quincy Avenue | Plains Pkwy | Gun Club Rd | Add through lane(s) | 2 | 6 | Principal | | | 6th Avenue | Monaghan Rd | Watkins Rd | Add New Road | | 4 | Collector | | Vetwork Stag | ging: 2035 (2025-2035) | | | | | | | | | Monaghan Rd | Quincy Ave | Yale Ave | Add New Road | | 6 | Principal | | | Quincy Avenue | Hayesmount Rd | Watkins Rd | Add through lane(s) | 2 | 6 | Principal | | | Quincy Avenue | Monaghan Rd | Hayesmount | Add through lane(s) | 2 | 6 | Principal | | | Watkins Rd | Quincy Ave | I-70 | Add through lane(s) | 2 | 6 | Principal | | | Yale Avenue | Monaghan Rd | Hayesmount Rd | Add through lane(s) | 2 | 6 | Principal | | | W. Coal Mine Road | S. Sheridan Blvd. | S. Platte Canyon Rd. | Add through lane(s) | 2 | 4 | Minor | | | Watkins Rd | I-70 | SH-36 | Add through lane(s) | 2 | 4 | Minor | | Arvada | | | | | | | | | Network Stag | ging: 2025 (2015-2024) | | | | | | | | | 64th Avenue | Kendrick St | Terry St. | Add through lane(s) | 2 | 4 | Principal | | Aurora | | | | | | | | | Network Stag | ging: 2015 (2012-2014) | | | | | | | | 2003-071 | 17th PL (phase 4) | I-225 NB | I-225 SB | Add New Road | | 4 | Minor | | 2003-071 | I-225 | Colfax Ave | | Interchange Reconstruction | | | Freeway | 11/29/2012 Page 1 of 14 | TIP-ID | Facility Name | Start At | End At | Improvement | Base
Lanes | Future
Lanes | Classification | |--------------|------------------------|-------------------|--------------------------|---------------------|---------------|-----------------|----------------| | | Gartell Road | County Line Rd | Inspiration Drive | Add through lane(s) | 2 | 4 | Minor | | Network Stag | ging: 2025 (2015-2024) | | | | | | | | | 6th Avenue | E-470 | Gun Club Rd | Add through lane(s) | 2 | 6 | Principal | | | 6th Avenue | 6th Pkwy | Harvest Mile Rd | Add through lane(s) | 3 | 6 | Principal | | | 6th Avenue | Airport Blvd | Tower Rd | Add through lane(s) | 2 | 6 | Principal | | | 6th Avenue (S-30) | Tower Rd | 6th Pkwy | Add through lane(s) | 2 | 6 | Principal | | | 6th Parkway
| SH-30 | E-470 | Add New Road | | 2 | Principal | | | 48th Avenue | Picadilly Rd | Powhaton Rd | Add New Road | | 6 | Principal | | | 56th Avenue | E-470 | Imboden Road | Add through lane(s) | 2 | 6 | Principal | | | 56th Avenue | Picadilly Rd | E-470 | Add through lane(s) | 2 | 6 | Principal | | | 64th Avenue | Aurora City Limit | Himalaya St | Add through lane(s) | 2 | 6 | Principal | | | 64th Avenue | Harvest Road | Powhaton Road | New Road | | 2 | Principal | | | 64th Avenue | Himalaya Rd | Harvest Mile Rd | Add through lane(s) | 2 | 4 | Principal | | | 64th Avenue | Powhaton Rd | Monaghan Rd | New Road | | 4 | Principal | | | Gun Club Rd | Yale Ave. | Mississippi Ave. | Add through lane(s) | 2 | 4 | Principal | | | Harvest Mile Road | 56th Avenue | DIA boundary line/64th A | ve Add New Road | | 3 | Principal | | | Harvest Mile Road | I-70 | 56th Ave | Add New Road | | 6 | Principal | | | Harvest Rd | Mississippi Ave | Alameda Ave | Add New Road | | 6 | Principal | | | Harvest Rd | 6th Ave | I-70 | Add New Road | | 6 | Principal | | | Harvest Rd | Alameda Ave | 6th Ave | Add through lane(s) | 3 | 6 | Principal | | | I-70 | Harvest Miles Rd | | New Interchange | | | Freeway | | | I-70 | Picadilly Rd | | New Interchange | | | Freeway | | | Jewell Avenue | E-470 | Gun Club Rd | Add through lane(s) | 2 | 6 | Principal | | | Jewell Avenue | Gun Club Rd | Harvest Rd. | Add through lane(s) | 2 | 6 | Principal | | | Jewell Avenue | Himalaya Rd | E-470 | Add through lane(s) | 3 | 6 | Principal | | | Picadilly Rd | 48th Ave | 56th Avenue | Add New Road | 2 | 6 | Principal | | | Picadilly Rd | 56th Ave | 70th Ave./Aurora City | Add New Road | | 6 | Principal | | | Picadilly Rd | 6th Ave | Colfax Ave | Add through lane(s) | 2 | 6 | Principal | | | Picadilly Rd | Colfax Ave | I-70 | Add New Road | | 6 | Principal | | | Picadilly Rd | Smith Road | 48th Ave | Add through lane(s) | 2 | 6 | Principal | | | Picadilly Road | I-70 | Smith Road | Add through lane(s) | 2 | 6 | Principal | 11/29/2012 Page 2 of 14 | | | | | | Base | Future | | |-------------|------------------------|-----------------------|---------------------|---------------------|-------|--------|----------------| | TIP-ID | Facility Name | Start At | End At | Improvement | Lanes | Lanes | Classification | | | Picadilly Road | Jewell Ave | 6th Ave Pkwy | Add New Road | | 4 | Principal | | | Tower Road | 6th Avenue | Colfax Avenue | Add New Road | | 2 | Principal | | | Tower Road | Colfax Avenue | Smith Rd | Add through lane(s) | 2 | 6 | Principal | | | 38th Avenue | Himalaya | Picadilly | Add New Road | | 4 | Minor | | | 38th Avenue | Imboden | Manila | Add New Road | | 4 | Minor | | | Aurora Parkway | Parker Rd | Picadilly | Add New Road | | 6 | Minor | | | Aurora Parkway | Picadilly | Gartrell | Add through lane(s) | 4 | 6 | Minor | | | County Line Road | Monaghan Section line | Hayesmount Road | Add through lane(s) | 2 | 4 | Collector | | | Dunkirk Street | Ceylon St | Louisiana Ave | Add through lane(s) | 2 | 4 | Minor | | | Harvest Road | Quincy Ave | Alexander Dr | Add through lane(s) | 2 | 4 | Collector | | | Manila Rd | I-70 | 38th Avenue | Add through lane(s) | 2 | 4 | Collector | | | Manila Rd | 38th Ave | 48th Ave | Add through lane(s) | 2 | 4 | Collector | | | Mississippi Avenue | Gun Club Road | Harvest Rd | Add through lane(s) | 2 | 4 | Collector | | | Mississippi Avenue | Harvest Rd | Powhaton Rd | Add through lane(s) | | 4 | Collector | | | Mississippi Avenue | Tower Road | Ceylon St | Add through lane(s) | 2 | 4 | Minor | | | Yale Avenue | Gun Club Rd | Harvest Mile Rd | Add New Road | | 4 | Collector | | | 48th Avenue | Powhaton Rd | Monaghan Rd | Add New Road | | 6 | Principal | | | 64th Avenue | Harvest Mile Road | Powhaton Rd | Add through lane(s) | 2 | 4 | Principal | | | Gun Club Rd | Yale Ave | Mississippi Ave | Add through lane(s) | 4 | 6 | Principal | | | Harvest Mile Road | 56th Ave | 64th Ave | Add through lane(s) | 3 | 6 | Principal | | | Harvest Mile Road | Jewell Ave | Mississippi Ave | Add through lane(s) | 2 | 6 | Principal | | | Imboden Rd | 48th Ave | 56th Ave | Add through lane(s) | 2 | 6 | Principal | | | Powhaton Rd | Smoky Hill Rd | County Line Rd | Add through lane(s) | 2 | 6 | Principal | | | Quail Run Rd | I-70 | 48th Ave | Add New Road | | 6 | Principal | | | Tower Road | 6th Avenue | Colfax Avenue | Add through lane(s) | 2 | 6 | Principal | | Brighton | | | | | | | | | Network Sta | ging: 2015 (2012-2014) | | | | | | | | | Telluride Street | Bromley Lane | Prairie Center Pkwy | Add New Road | | 2 | Collector | | | Tower Road | Bridge Street | Bromley Lane | Add New Road | | 4 | Minor | | Network Sta | ging: 2025 (2015-2024) | | | | | | | | | Bromley Lane | Hwy 85 | Sable Blvd | Add through lane(s) | 4 | 6 | Principal | | | | | | | | | | 11/29/2012 Page 3 of 14 | | | o | | | Base | Future | | |--------------|------------------------|-----------------------------|------------------|----------------------------|-------|--------|----------------| | TIP-ID | Facility Name | Start At | End At | Improvement | Lanes | Lanes | Classification | | | Bromley Lane | Tower Rd | I-76 | Add through lane(s) | 4 | 6 | Principal | | | Buckley Road | 136th Avenue | Bromley Lane | Add through lane(s) | 2 | 4 | Principal | | | ld County | | | | | | | | letwork Stag | ging: 2015 (2012-2014) | All: O | E 110 | A.I.N. B. I | | • | D | | | 120th Avenue | Allison St | Emerald St | Add New Road | | 6 | Principal | | | 160th Avenue | Lowell Blvd | Sheridan Pkwy | Add New Road | | 2 | Principal | | | Wadsworth Blvd | 120th Ave | US-287 | Add through lane(s) | 4 | 6 | Major Regional | | | Lowell Boulevard | 128th Avenue | 136th Avenue | Add through lane(s) | 2 | 4 | Minor | | Jetwork Stag | ging: 2025 (2015-2024) | | | | | | | | | 144th Avenue | Sheridan Blvd | Zuni Street | Add through lane(s) | 2 | 4 | Principal | | | 144th Avenue | US-287 | Sheridan Blvd | Add through lane(s) | 2 | 4 | Principal | | | 160th Avenue | Boulder/Broomfield Co. line | e Lowell Blvd | Add New Road | | 4 | Principal | | | Huron Street | 160th Ave | SH-7 | Add through lane(s) | 2 | 4 | Principal | | | Huron Street | 150th Ave | 160th Ave | Add through lane(s) | 2 | 4 | Principal | | | I-25 | SH-7 | | Interchange Reconstruction | | | Freeway | | | Interlocken Loop | 96th St. w/Northwest Pkwy | SH-128 | Add through lane(s) | 4 | 6 | Principal | | | SH-7 | Boulder County Line | Sheridan Parkway | Add through lane(s) | 2 | 4 | Principal | | | SH-7 | Sheridan Pkwy | I-25 | Add through lane(s) | 2 | 6 | Principal | | | Sheridan Pkwy | Lowell Boulevard | NW Parkway | Add through lane(s) | 2 | 4 | Principal | | | Sheridan Pkwy | Northwest Pkwy | SH-7 | Add through lane(s) | 2 | 4 | Principal | | | Hoyt Street | Midway Boulevard | Industrial Lane | Add New Road | | 2 | Collector | | letwork Stag | ging: 2035 (2025-2035) | | | | | | | | | US-36 | Wadsworth Blvd | | Interchange Reconstruction | | | Freeway | | Castle Ro |
ock | | | | | | | | Network Stag | ging: 2025 (2015-2024) | | | | | | | | | Meadows Parkway | Coachline Road | Meadows Blvd | Add through lane(s) | 2 | 4 | Principal | | | North Meadows Drive | Meadows Blvd | US-85 | Add New Road | | 4 | Minor | | | Plum Creek Parkway | Gilbert Street | Ridge Road | Add through lane(s) | 2 | 4 | Principal | | | Ridge Road | Plum Creek Parkway | SH-86 | Add through lane(s) | 2 | 4 | Principal | | | Southwest Ring Rd | Wolfensberger Rd | I-25 | Add through lane(s) | 2 | 4 | Principal | | | US-85 | Castlegate Drive | | New Interchange | | | Major Regional | 11/29/2012 Page 4 of 14 | | | | | | Base | Future | | |--------------|------------------------|-------------------------|-----------------------|----------------------------|-------|--------|----------------| | TIP-ID | Facility Name | Start At | End At | Improvement | Lanes | Lanes | Classification | | | Wolfensberger Road | Coachline Road | Prairie Hawk Dr. | Add through lane(s) | 2 | 4 | Principal | | | Prairie Hawk Drive | Wolfensberger Road | Franktown Rd | Add through lane(s) | 2 | 4 | Minor | | | Prairie Hawk Drive | Franktown Rd | Plum Creek Pkwy | Add New Road | | 4 | Minor | | | Valley Drive | South Street | Plum Creek Pkwy | Add New Road | | 2 | Collector | | | Woodlands Blvd. | Dales Pony Circle | Scott Blvd. | Add New Road | | 4 | Collector | | Network Stag | ing: 2035 (2025-2035) | | | | | | | | | Crystal Valley Parkway | I-25 East Frontage Road | West Loop Road | Add New Road | 2 | 4 | Minor | | CDOT Reg | | | | | | | | | Network Stag | ing: 2025 (2015-2024) | | = . | | | | | | | US-285 | Richmond Hill Road | Kings Valley Drive | Add through lane(s) | 2 | 4 | Major Regional | | | US-285 | Pine Junction | | Add New Interchange | | | Major Regional | | 2001-154 | US-85 | SH-67 (Sedalia) | Daniels Park Rd | Add through lane(s) | 2 | 4 | Major Regional | | 1999-001 | I-25 | RidgeGate Parkway | Lincoln Avenue | Add through lane(s) | 6 | 8 | Freeway | | 1999-001 | I-25 | Lincoln Avenue | County Line Rd South | Add through lane(s) | 6 | 8 | Freeway | | 2001-154 | US-85 | Cook Ranch (MP 194.8) | Louviers | Add through lane(s) | 2 | 4 | Major Regional | | 2001-154 | US-85 | Castlegate Drive | Meadows Pkwy | Add through lane(s) | 2 | 4 | Major Regional | | Network Stag | ning: 2035 (2025-2035) | | | | | | | | | SH-119 | US-6/SH-119 | Main St. (Black Hawk) | Add through lane(s) | 2 | 4 | Principal | | | US-285 | Kings Valley Drive | Shaffers Crossing | Add through lane(s) | 2 | 4 | Major Regional | | | US-285 | Kings Valley Drive | | Add New Interchange | | | Major Regional | | 2001-154 | US-85 | Louviers | MP 191.75 | Add through lane(s) | 2 | 4 | Major Regional | | 2001-154 | US-85 | Daniels Park Rd | Castlegate Drive | Add through lane(s) | 2 | 4 | Major Regional | | CDOT Reg | | | | | | | | | | ing: 2015 (2012-2014) | | | | | | | | 1997-033 | Arapahoe Avenue | Cherryvale Rd | Vo Tech Entrance | Add through lane(s) | 2 | 4 | Principal | | Network Stag | ing:
2035 (2025-2035) | | | | | | | | 2001-252 | SH-119 | SH-52 | | New Interchange | | | Major Regional | | | I-25 | SH-66 | WCR 38 | Add HOT lanes | | 2 | Freeway | | | I-25 | WCR 34 | | Interchange Reconstruction | | | Freeway | CDOT Region 6 Network Staging: 2015 (2012-2014) 11/29/2012 Page 5 of 14 | TID ID | Facility Name | Chart At | | I manufactura manu | Base | Future | Classification | |--------------|-----------------------|--------------------------|----------------------------|--|-------|--------|----------------| | TIP-ID | Facility Name | Start At | End At | Improvement | Lanes | Lanes | Classification | | 2007-051 | US-36 | I-25 Express lanes | Wadsworth Pkwy | Add HOT lanes | | 2 | Freeway | | 2007-171 | US-6 | Federal Blvd | | Interchange Reconstruction | | | Freeway | | 2007-171 | US-6 | Bryant St | | Remove Component | | | Freeway | | | Wadsworth Blvd | 10th Ave | 14th Ave | Add through lane(s) | 4 | 6 | Principal | | | ing: 2025 (2015-2024) | | | | | | | | 2007-158 | Alameda Avenue | Lipan St | Santa Fe Dr | Add through lane(s) | 6 | 8 | Principal | | 999-006 | I-225 | North Ramps of Parker Rd | South Ramps of Mississippi | Add through lane(s) | 4 | 6 | Freeway | | 007-158 | I-25 | Santa Fe Dr | | Interchange Reconstruction | | | Freeway | | | I-25 | Arapahoe Road | | Interchange Reconstruction | | | Freeway | | | I-70 | Kipling Street | | Interchange Reconstruction | | | Freeway | | 2007-051 | US-36 | Table Mesa Dr. | Wadsworth Pkwy | Add HOT lanes | | 2 | Freeway | | | I-25 | US-36 | 120th Ave | Add HOT lanes | | 2 | Freeway | | | US-6 | Wadsworth Blvd | | Interchange Reconstruction | | | Freeway | | | Wadsworth Blvd | 4th Ave | 10th Ave | Add through lane(s) | 4 | 6 | Principal | | Network Stag | ing: 2035 (2025-2035) | | | | | | | | | Arapahoe Road | Havana Street | | Add New Interchange | | | Principal | | | Arapahoe Road | Revere Pkwy | | Add New Interchange | | | Principal | | | Hampden Avenue | Colorado Boulevard | I-25 | Add through lane(s) | 4 | 6 | Major Regional | | | I-270 | Vasquez Blvd | Quebec St. | Add through lane(s) | 4 | 6 | Freeway | | | I-70 | I-270 | Havana St | Add through lane(s) | 8 | 10 | Freeway | | | I-70 | Brighton Blvd | York St | Reconstruction | | | Freeway | | | I-70 | York St | | Interchange Reconstruction | | | Freeway | | | Parker Road | Quincy Avenue | Hampden Avenue | Add through lane(s) | 6 | 8 | Major Regional | | | SH-7 | Riverdale Rd | US-85 | Add through lane(s) | 2 | 4 | Principal | | | SH-7 | 160th Ave | Dahlia St | Add through lane(s) | 2 | 4 | Principal | | | SH-7 | 164th Ave | 160th Ave | Add through lane(s) | 2 | 4 | Principal | | | US-36 | Sheridan Blvd | - | Interchange Reconstruction | | | Freeway | | | US-6 | Kipling Street | | Interchange Reconstruction | | | Freeway | | | US-6 | Simms Street | | Interchange Reconstruction | | | Freeway | #### Centennial Network Staging: 2035 (2025-2035) 11/29/2012 Page 6 of 14 | TIP-ID | Facility Name | Start At | End At | Improvement | Base
Lanes | Future
Lanes | Classification | |--------------|------------------------|----------------------------|---------------------|---------------------|---------------|-----------------|----------------| | | Arapahoe Road | Himalaya Way | Liverpool St | Add through lane(s) | | 6 | Principal | | | Smoky Hill Road | Pleasant Run Pkwy | Versailles | Add through lane(s) | 4 | 6 | Principal | | | Colorado Blvd | County Line | Dry Creek | Add through lane(s) | 2 | 4 | Minor | | Commerc | | | | | | | | | Network Stag | ging: 2015 (2012-2014) | | | | | | | | | 104th Avenue | US-85 | SH-2 | Add through lane(s) | 2 | 4 | Principal | | Network Stag | ging: 2025 (2015-2024) | | | | | | | | | 96th Avenue | Buckley Road | Tower Road | Add New Road | | 4 | Principal | | | Buckley Road | 118th Avenue | Cameron Dr | Add through lane(s) | 2 | 6 | Principal | | | Tower Road | Pena Boulevard | 105th Avenue | Add through lane(s) | 2 | 6 | Principal | | | Tower/Buckley Road | 105th Ave | 118th Ave | Add New Road | | 4 | Principal | | Network Stag | ging: 2035 (2025-2035) | | | | | | | | | 96th Avenue | SH-2 | Buckley Road | Add through lane(s) | 2 | 4 | Principal | | | 96th Avenue | Tower Rd | Picadilly Rd | Add through lane(s) | 2 | 6 | Principal | | | 120th Avenue | E-470 | Tower Rd | Add through lane(s) | 2 | 6 | Principal | | | 120th Avenue | Tower Rd | Picadilly Rd | Add through lane(s) | 2 | 6 | Principal | | | 120th Avenue | Sable Blvd | E-470 | Add through lane(s) | 2 | 6 | Principal | | | Picadilly Rd | 96th Ave | 120th Ave | Add New Road | | 6 | Principal | | | Picadilly Rd | 82nd Ave | 96th Ave | Add New Road | | 6 | Principal | | | 88th Avenue | Tower Rd | Picadilly Rd | Add New Road | | 4 | Collector | | | 104th Avenue | E-470 | Picadilly Rd | Add New Road | | 4 | Principal | | | 112th Avenue | SH-2 | Picadilly Rd | Add through lane(s) | 2 | 4 | Collector | | Denver | | | | | | | | | Network Stag | ging: 2015 (2012-2014) | | | | | | | | | 71st Avenue | Tower Rd | Dunkirk St | Add New Road | | 6 | Minor | | | 71st Avenue | Telluride St | Tower Rd | Add New Road | | 6 | Minor | | | Highpointe Blvd | Dunkirk St | Telluride St. | Add New Road | | 4 | Minor | | | 56th Avenue | Havana Street | Pena Blvd | Add through lane(s) | 2 | 6 | Principal | | | Broadway | Mississippi Ave | Kentucky Ave | Add through lane(s) | 6 | 8 | Principal | | | Broadway | Kentucky Ave | Exposition | Add through lane(s) | 4 | 6 | Principal | | | Central Park Blvd | 47th Ave (Northfield Blvd) | 56th Ave | Add New Road | | 4 | Principal | 11/29/2012 Page 7 of 14 | | | | | | Base | Future | | |----------------|---------------------------|----------------------|---------------------------|---------------------|-------|--------|----------------| | TIP-ID | Facility Name | Start At | End At | Improvement | Lanes | Lanes | Classification | | 2007-083 | I-70 | Central Park Blvd | | New Interchange | | | Freeway | | | Martin Luther King Blvd | Havana St/Iola St | Peoria St | Add New Road | | 4 | Principal | | 2007-083 | North I-70 Frontage Rd | Havana St | Central Park Blvd | Add New Road | | 4 | Minor | | | Pena Boulevard | E-470 east ramps | 78th/75th Ave ramps | Add through lane(s) | 6 | 8 | Freeway | | 2007-083 | South I-70 Frontage Rd | Central Park Blvd | Havana St | Add New Road | | 4 | Minor | | | 60th Avenue | Tower Rd | Dunkirk St | Add New Road | | 4 | Collector | | | Argonne Street | 56th Ave | 67st Ave | Add New Road | | 2 | Collector | | | Dunkirk Street | 56th | 66th | Add through lane(s) | 2 | 4 | Minor | | | Dunkirk Street | 66 | 71st | Add New Road | | 4 | Minor | | | Havana Street/Iola Street | Florence Way | Smith Road | | | 4 | Minor | | | Iola St | E. 25th Ave | E. 26th Ave | Add New Road | | 4 | Minor | | | Telluride Street | 40th Ave | 71st Ave | Add New Road | | 4 | Minor | | | Yampa Street | 40th Ave | 72nd Ave | Add New Road | | 4 | Collector | | Network Stagin | ng: 2025 (2015-2024) | | | | | | | | | 56th Avenue | Himalaya St | Picadilly Rd | Add through lane(s) | 2 | 4 | Principal | | | 56th Avenue | Himalaya St | Picadilly Rd | Add through lane(s) | 4 | 6 | Principal | | | 56th Avenue | Pena Blvd | Tower Rd | Add through lane(s) | 4 | 6 | Principal | | | 64th Avenue | Tower Rd | Denver/Aurora City Limits | Add through lane(s) | 2 | 4 | Principal | | | 56th Avenue | Dunkirk St | Himalaya St | Add through lane(s) | 4 | 6 | Principal | | | Broadway | Arizona Ave | Mississippi Ave | Add through lane(s) | 4 | 6 | Principal | | | Evans Avenue | Colorado Blvd | I-25 | Add through lane(s) | 4 | 6 | Principal | | | Federal Boulevard | 5th Ave | Holden Place | Add through lane(s) | 5 | 6 | Principal | | | Green Valley Ranch Blvd | Chambers Rd | Telluride St | Add through lane(s) | 4 | 6 | Principal | | | Green Valley Ranch Blvd | Chambers Rd | Pena Blvd | Add through lane(s) | 2 | 4 | Principal | | | Green Valley Ranch Blvd | Telluride St. | Tower Rd | Add
through lane(s) | 4 | 6 | Principal | | | Pena Blvd | I-70 | Tower Rd | Add through lane(s) | 4 | 6 | Freeway | | | Pena Boulevard | Jackson Gap St. west | DIA Terminal | Add through lane(s) | 6 | 8 | Freeway | | | Pena Boulevard | Tower Road | E-470 east ramps | Add through lane(s) | 4 | 6 | Freeway | | | Picadilly Road | 70th Ave | 82nd Ave | Add New Road | | 6 | Principal | | | Tower Road | 38th Ave. | 43th Ave | Add through lane(s) | 2 | 6 | Principal | | | Tower Road | 43th Ave | Green Valley Ranch Blvd | Add through lane(s) | 4 | 6 | Principal | 11/29/2012 Page 8 of 14 | TIP-ID | Facility Name | Start At | End At | Improvement | Base
Lanes | Future
Lanes | Classification | |--------------|-----------------------------|------------------------|-------------------------|----------------------------|---------------|-----------------|----------------| | | Tower Road | 56th Avenue | Pena Boulevard | Add through lane(s) | 4 | 6 | Principal | | | Tower Road | 48th Ave | 56th Ave | Add through lane(s) | 4 | 6 | Principal | | | Washington Street | Elk Place | 52nd Avenue | Add through lane(s) | 2 | 4 | Principal | | | 45th Avenue | Chambers Rd | Airport Blvd | Add New Road | | 2 | Collector | | | Airport Way | 48th Ave | 56th Ave | Add New Road | | 4 | Collector | | letwork Stag | ing: 2035 (2025-2035) | | | | | | | | | 38th Avenue | Brighton Blvd | Walnut St | Add through lane(s) | 2 | 4 | Principal | | | Hampden Avenue (SH-30) | Dayton Street | Havana Street | Add through lane(s) | 5 | 6 | Principal | | Douglas C |
ounty | | | | | | | | letwork Stag | ing: 2015 (2012-2014) | | | | | | | | 003-112 | C-470 | Santa Fe Dr. | | Interchange Reconstruction | | | Freeway | | letwork Stag | ing: 2025 (2015-2024) | | | | | | | | | Canyons Pkwy (Arterial A) | Crowfoot Valley Rd | Hess Rd | Add New Road | | 4 | Principal | | | Chambers Road | Mainstreet | Lincoln Avenue | Add through lane(s) | 2 | 4 | Principal | | | County Line Road | Phillips St | University Blvd | Add through lane(s) | 2 | 4 | Principal | | | I-25 | Castlegate Dr | | New Interchange | | | Freeway | | | Lincoln Avenue | Peoria St | 1st Ave | Add through lane(s) | 4 | 6 | Principal | | | North Meadows Dr. extension | Castle gate Drive West | I-25 | Add New Road | | 4 | Minor | | | Peoria Street | E-470 | .75 miles s/Lincoln Ave | Add through lane(s) | 2 | 4 | Principal | | letwork Stag | ing: 2035 (2025-2035) | | | | | | | | | Bayou Gulch/Chambers Rd | Vistancia Dr. | Southern Boundary of | Add New Road | | 4 | Principal | | | Bayou Gulch/Chambers Rd | Parker Road | Vistancia Dr. | Add through lane(s) | 2 | 4 | Principal | | | Crowfoot Valley Rd | Founders Pkwy | Macanta Rd | Add through lane(s) | 2 | 4 | Principal | | | Crowfoot Valley Road | Macanta Rd | Chambers Rd | Add through lane(s) | 2 | 4 | Principal | | | Douglas Lane | West I-25 Frontage Rd | East I-25 Frontage Rd | Add through lane(s) | | 2 | Minor | | | Hess Rd | I-25 | Chambers Rd | Add through lane(s) | 2 | 4 | Principal | | | Hilltop Rd | Canterberry Pkwy | Singing Hills Rd | Add through lane(s) | 2 | 4 | Principal | | | I-25 | Douglas Lane | | New Interchange | | | Freeway | | | Lincoln Avenue | 1st Street | Keystone Blvd | Add through lane(s) | 4 | 6 | Principal | | | Mainstreet | Canterberry Pkwy | Tomahawk Rd | Add through lane(s) | 2 | 4 | Principal | | | Peoria Street | .75 mi S. Lincoln Ave | Mainstreet | Add through lane(s) | 2 | 4 | Principal | 11/29/2012 Page 9 of 14 | TIP-ID | Facility Name | Start At | End At | Improvement | Base
Lanes | Future
Lanes | Classification | |-------------|-------------------------|------------------|--------------------|----------------------------|---------------|-----------------|----------------| | | Rampart Range Rd | Waterton Rd | Titan Rd | Add through lane(s) | 2 | 4 | Principal | | | Ridgegate Pkwy | Peoria St | Chambers Rd | Add through lane(s) | 2 | 4 | Principal | | | Titan Rd | Rampart Range Rd | Santa Fe Dr. | Add through lane(s) | 2 | 4 | Principal | | | Waterton Rd | Dante Drive | Campfire St | Add through lane(s) | 2 | 4 | Principal | | | Singing Hills Rd | Hilltop Rd | Elbert County Line | Add through lane(s) | 2 | 4 | Collector | | E-470 Au | | | | | | | | | Network Sta | nging: 2025 (2015-2024) | | | | | | | | | E-470 | Potomac | | New Interchange | | | Freeway | | | E-470 | Quebec | | New Interchange | | | Freeway | | | E-470 | 48th Ave | | Add New Interchange | | | Freeway | | Network Sta | nging: 2035 (2025-2035) | | | | | | | | | E-470 | I-76 | Pena Blvd | Add through lane(s) | 4 | 6 | Freeway | | | E-470 | Parker Rd | Jewell Avenue | Add through lane(s) | 4 | 6 | Freeway | | | E-470 | Jewell Avenue | I-70 | Add through lane(s) | 4 | 6 | Freeway | | | E-470 | 112th Avenue | | New Interchange | | | Freeway | | | E-470 | I-25 North | I-76 | Add through lane(s) | 4 | 6 | Freeway | | | E-470 | I-25 | Peoria St | Add through lane(s) | 6 | 8 | Freeway | | | E-470 | Peoria St | Chambers Rd | Add through lane(s) | 8 | 10 | Freeway | | | E-470 | Chambers Rd | Jordan Rd | Add through lane(s) | 6 | 8 | Freeway | | | E-470 | Jordan Rd | Parker Rd | Add through lane(s) | 7 | 9 | Freeway | | | E-470 | I-70 | Pena Blvd | Add through lane(s) | 4 | 6 | Freeway | | | E-470 | I-70 | | Interchange Reconstruction | | | Freeway | | | E-470 | 88th Avenue | | Add New Interchange | | | Freeway | | | East Frontage Rd | 88th Ave | 96th Ave | Add New Road | | 1 | Frontage Road | | | Gun Club Rd | 6th Pkwy | Smith Rd | Add New Road | | 2 | Minor | | | West Frontage Rd | 88th Ave | 96th Ave | Add New Road | | 1 | Frontage Road | |
Erie | | | | | | | | | Network Sta | nging: 2025 (2015-2024) | | | | | | | | | Leon A. Wurl Pkwy | US-287 | 119th St. | Add through lane(s) | 2 | 4 | Principal | ### **Greenwood Village**Network Staging: 2025 (2015-2024) Page 10 of 14 11/29/2012 | TIP-ID | Facility Name | Start At | End At | Improvement | Base
Lanes | Future
Lanes | Classification | |---------------|-----------------------------|----------------------|-----------------------------|----------------------------|---------------|-----------------|----------------| | | Peakview Ave/Dayton St | Boston Street | Dayton Street | Add through lane(s) | 2 | 4 | Collector | | Jefferson | County | | | | | | | | | ging: 2025 (2015-2024) | | | | | | | | | Quincy Avenue | Simms St | Kipling Pkwy | Add through lane(s) | 2 | 4 | Principal | | | Chatfield Avenue | Pierce Street | Kendall Boulevard | Add through lane(s) | 2 | 3 | Principal | | | Quincy Avenue | Kipling Street | Carr Street | Add through lane(s) | 2 | 4 | Principal | | Network Stag | ging: 2035 (2025-2035) | | | | | | | | | Quincy Avenue | C-470 | Simms Street | Add through lane(s) | 2 | 4 | Principal | | | Pkwy/Highway | | _ | | | | | | Network Stag | ging: 2025 (2015-2024) | | | | | | | | | Jefferson Pkwy | SH-128/96th St | SH-93 n/o 64th Ave | Add New Road | | 4 | Freeway | | | Jefferson Pkwy | SH-72 | | Add New Interchange | | | Freeway | | | Jefferson Pkwy | Candelas Parkway | | Add New Interchange | | | Freeway | | | Jefferson Pkwy | Indiana St | | Add New Interchange | | | Freeway | | | SH-93 | 64th Pkwy | .5 miles n/o Jefferson Pkwy | Add through lane(s) | 2 | 4 | Principal | | Lafayette | | | | | | | | | Network Stag | ging: 2025 (2015-2024) | | | | | | | | | 120th Street | Emma | Coal Creek | Add through lane(s) | 2 | 4 | Minor | | | South Boulder Road | LaMont Does Park | 120th St | Add through lane(s) | 2 | 4 | Minor | | Network Stag | ging: 2035 (2025-2035) | | | | | | | | | South Boulder Rd/160th Ave. | 120th St | Boulder/Broomfield County | Add New Road | | 2 | Principal | | Lakewood | - | | | | | | | | Network Stag | ging: 2025 (2015-2024) | Malatana Ot | Danner Dd | A -l -l +ll - l (-) | 0 | 0 | Dula sia si | | | Alameda Avenue | McIntyre St | Rooney Rd | Add through lane(s) | 2 | 6 | Principal | | | Alameda Avenue | Bear Creek Boulevard | McIntyre St | Add through lane(s) | 2 | 4 | Principal | | | McIntyre Street | Alameda Ave. | Yale | Add through lane(s) | | 4 | Minor | | | Yale Avenue | Indiana St | McIntyre St | Add New Road | | 4 | Collector | | Littleton | ring, 2025 (2015, 2024) | | | | | | | | ivelwork Stag | ging: 2025 (2015-2024) | Droodway | Minoral Ava | Add through lang(a) | 0 | 4 | Minor | | | Dry Creek Rd | Broadway | Mineral Ave | Add through lane(s) | <u> </u> | <u> </u> | Minor | #### **Lone Tree** 11/29/2012 Page 11 of 14 | ΓIP-ID | Facility Name | Start At | End At | Improvement | Base
Lanes | Future
Lanes | Classification | |--------------|------------------------|----------------------|----------------------|---------------------|---------------|-----------------|---------------------| | Vetwork Stag | ging: 2015 (2012-2014) | | | | | | | | | Sky Ridge Ave | Ridgegate Parkway | Park Meadows Blvd. | Add New Road | | 2 | Collector | | Vetwork Stag | ging: 2025 (2015-2024) | | | | | | | | | Havana St | Lincoln Ave. | RidgeGate Parkway | Add New Road | | 2 | Minor | | | Sky Ridge Avenue | Park Meadows | Peoria St | Add New Road | | 4 | Minor | | ongmont | | | | | | | | | letwork Stag | ging: 2025 (2015-2024) | | | | | | | | | 17th Avenue | Alpine St. | East County Line Rd | Add through lane(s) | 2 | 4 | Principal | | | Nelson Rd | 75th St | Affolter Dr | Add through lane(s) | 2 | 4 | Principal | | | Pace Street | 5th Avenue | Ute Road | Add through lane(s) | 2 | 4 | Principal | | 999-026 | SH-66 | Hover Road | US 287 (Longmont) | Add through lane(s) | 2 | 4 | Principal | | letwork Stag | ging: 2035 (2025-2035) | | | | | | | | | East County Line Rd | 9th Ave | SH-66 | Add through lane(s) | 2 | 4 | Principal | | Parker | | | | | | | | | letwork Stag | ging: 2015 (2012-2014) | | | | | | | | | Chambers Rd. | Stroh Rd. | Hess Road | Add New Road | | 2 | Principal | | | Stroh Rd | Chambers Rd | Crowfoot Valley Rd | Add New Road | | 4 | Principal | | etwork Stag | ging: 2025 (2015-2024) | | | | | | | | | Chambers Rd |
Crowfoot Valley Road | Southern Boundary of | Add New Road | | 2 | Principal | | | Chambers Rd. | Stroh Rd. | Hess Road. | Add through lane(s) | 2 | 4 | Principal | | | Chambers Road | Stroh Road | Crowfoot Valley Road | Add New Road | | 2 | Principal | | | Chambers Road | Stroh Road | Crowfoot Valley Road | Add through lane(s) | 2 | 4 | Principal | | | Chambers Road | Hess Road | Mainstreet | Add through lane(s) | 2 | 4 | Principal | | | Chambers Road | Newlin Gulch Blvd | Mainstreet | Add through lane(s) | 2 | 4 | Principal | | | Crowfoot Valley Road | Chambers Rd | Stroh Rd | Add through lane(s) | 2 | 4 | Principal | | | Hess Road | Chambers Rd | Parker Road | Add through lane(s) | 2 | 4 | Principal | | | Jordan Road | Bradbury Pkwy | Hess Rd | Add through lane(s) | 2 | 4 | Principal | | | Lincoln Avenue | Keystone Blvd | Parker Rd | Add through lane(s) | 4 | 6 | Principal | | | Stroh Rd | Crowfoot Valley | J. Morgan Blvd | Add through lane(s) | 2 | 4 | Principal Principal | | | Cottonwood Drive | Parker Road | Jordan Road | Add through lane(s) | 2 | 4 | Minor | | | Cottonwood Drive | Jordan Road | Chambers Road | Add New Road | | 4 | Minor | 11/29/2012 Page 12 of 14 | TIP-ID | Facility Name | Start At | End At | Improvement | Base
Lanes | Future
Lanes | Classification | |----------------------------------|--------------------------------|-----------------------|------------------------|----------------------|---------------|-----------------|----------------| | | Motsenbocker Road | Hess Road | Mainstreet | Add through lane(s) | 2 | 4 | Collector | | | Todd Drive | Jordan Road | Motsenbocker Road | Add New Road | | 2 | Collector | | Network Stagi | ing: 2035 (2025-2035) | | | | | | | | | Chamber Road | Crowfoot Valley Rd | South Boundary | Add through lane(s) | 2 | 4 | Principal | |
R T D | | | | | | | | | Network Stagi | ing: 2015 (2012-2014) | | | | | | | | 2007-042 | West Corridor LRT Line | South Golden | CPV LRT Spur | Rapid Transit | | | Rapid Transit | | Network Stagi | ing: 2025 (2015-2024) | | | | | | | | | Denver Downtown Circulator | DUS | Civic Center | Bus Transit Shuttle | | | | | | Commuter Rail Maintenance | Fox St | | Rapid Transit- Other | | | Rapid Transit | | 2007-057 | Denver Union Station Expansion | 16th St/Wynkoop | | Rapid Transit- Other | | | Rapid Transit | | 2007-052 | East Corridor Commuter Rail | Denver Union Terminal | DIA | Rapid Transit | | | Rapid Transit | | 2007-054 | Gold Line LRT | DUS | Ward Rd | Rapid Transit | | | Rapid Transit | | 2007-056 | I-225 LRT Corridor | Parker Rd | East Corridor Commuter | Rapid Transit | | | Rapid Transit | | 2007-066 | LRT | Eliati Street | | Transit Maintenance | | | Rapid Transit | | 2007-050 | Northwest Rail | DUS | Westminster | Rapid Transit | | | Rapid Transit | | 2007-055 | North Metro | DUS | 72nd Ave | Rapid Transit | | | Rapid Transit | | Network Stagi | ing: 2035 (2025-2035) | | | | | | | | 2007-059 | Southeast Rail Extension | Lincoln Ave | Ridgegate Pkwy | Rapid Transit | | | Rapid Transit | | | | | | | | | | | Sheridan
Network Stagi | ing: 2015 (2012-2014) | | | | | | | | | Quincy Avenue | Irving St | Federal Blvd | Add New Road | | 2 | Principal | |
Thornton | | | | | | | | | Network Stagi | ing: 2015 (2012-2014) | | | | | | | | | Holly Street | 136th Ave. | 138th Ave. | Add through lane(s) | 2 | 4 | Minor | | | Holly Street | 123rd Ave. | 128th Ave. | Add through lane(s) | 2 | 4 | Minor | | | McKay Road | 104th Ave. | 103rd Ave. | Add through lane(s) | 2 | 4 | Collector | | Network Stagi | ing: 2025 (2015-2024) | | | | | | | | | 104th Avenue | Grandview Ponds | McKay Rd | Add through lane(s) | 2 | 4 | Principal | | | 144th Avenue | York St | Colorado Blvd | Add through lane(s) | 2 | 4 | Principal | 11/29/2012 Page 13 of 14 | TIP-ID | Facility Name | Start At | End At | Improvement | Base
Lanes | Future
Lanes | Classification | |------------------|--------------------------------------|----------------|-----------------------|----------------------------|---------------|-----------------|----------------| | | 144th Avenue | Washington St. | York St. | Add through lane(s) | 2 | 4 | Principal | | | Colorado Blvd | 152nd Ave | 156th Ave | Add through lane(s) | 2 | 4 | Principal | | | Colorado Blvd | 156th Ave | 160th Ave (SH-7) | Add New Road | ۷ | 4 | Principal | | | Quebec Street | 120th Ave | 128th Ave | Add through lane(s) | 2 | 4 | Principal | | | Quebec Street | 132nd Ave | 160th Ave | Add through lane(s) | 2 | 4 | Principal | | | Washington Street | 152nd Ave | 160th Ave | Add through lane(s) | 2 | 4 | Principal | | | Washington Street | 144th Avenue | 152nd Ave | Add through lane(s) | 2 | 4 | Principal | | | York Street | E-470 | SH-7 | Add through lane(s) | 2 | 4 | Principal | | | 112th Avenue | Steele St. | Colorado Blvd. | Add through lane(s) | 2 | 4 | Collector | | Notwork Stor | ing: 2035 (2025-2035) | Sieele Si. | Golorado Diva. | Aud tillough lane(s) | ۷ | 4 | Collector | | Network Stagi | 104th Avenue | McKay Road | US-85 | Add through lane(s) | 2 | 4 | Principal | | | 104th Avenue | Marion St | Colorado Blvd | Add through lane(s) | 4 | 6 | Principal | | | 152nd Avenue | Washington St. | York St | Add through lane(s) | 2 | 4 | Principal | | | Colorado Blvd | SH-7 | 168th Ave | Add New Road | ۷ | 4 | Principal | | | Thornton Pkwy | Colorado Blvd | Riverdale Road | Add through lane(s) | 2 | 4 | Principal | | | York Street | 150nd Ave | E-470 | Add through lane(s) | 2 | 4 | Principal | | | 160th Avenue | I-25 | Washington St. | Add through lane(s) | 2 | 4 | Minor | | | | | | Add through lane(s) | | | | | Westminst | t er
ing: 2035 (2025-2035) | | | | | | | | vetwork otagi | Wadsworth Parkway | 92nd Avenue | SH-128/ new 120th Ave | Add through lane(s) | 4 | 6 | Major Regional | | | 128th Avenue | I-25 | Zuni Street | Add through lane(s) | 2 | 4 | Minor | |
Wheat Rid | | | | 7.00 1009100(0) | | | | | | ing: 2015 (2015-2024) | | | | | | | | romon oragi | I-70 | 32nd Ave | | Interchange Reconstruction | | | Freeway | | | SH-58 | Cabela Street | | New Interchange | | | Freeway | | Network Stag | ing: 2035 (2025-2035) | 0400.4 0000 | | | | | | | | Wadsworth Blvd | 36th Ave | 46th Ave | Add through lane(s) | 4 | 6 | Principal | 11/29/2012 Page 14 of 14 (intentionally blank) ## APPENDIX B TRANSPORTATION MODEL CALIBRATION DESCRIPTION (intentionally blank) #### Introduction In support of the conformity determination for the 2035 Regional Transportation Plan (RTP), the Denver Regional Council of Governments' (DRCOG) Metro Vision Resource Center employed the Regional Socio-economic Model together with *Focus*, the updated regional travel modeling system. Travel modeling uses mathematical formulations in computer software programs to show how regional development impacts road and transit usage. The *Focus* model simulates the travel of millions of individual people in the region throughout a typical weekday. The previous model, Compass, was an aggregate model that did not include this level of detail. The *Focus* model sums the individual travel to forecast how many vehicles will be driven on major roads, how much congestion there will be and how many people will walk, bike or use transit. To realistically simulate each person's daily travel, *Focus* models the many choices each person makes each day including: - (1) where to work - (2) where to go to school - (3) how many automobiles are owned by the person's household - (4) how many trips each person makes in a day - (5) the address where each trip starts from and goes to - (6) the mode for each trip, with choices including walk and biking - (7) which major streets or bus routes were chosen to reach each destination The model takes into account many characteristics of people, such as their age and income, and how the region will change demographically over time. It also takes into account characteristics of the built environment such as congestion, density, and walkability. The *Focus* travel model was estimated based on detailed data from a survey called the Travel Behavior Inventory (TBI). The TBI project involved multiple surveys of travel in the Denver metropolitan area, including: - The Household Survey a travel diary survey that gathered complete travel information for an assigned day for approximately 5,000 households; - The Front Range Travel Survey a survey of vehicles entering and leaving the metropolitan area; - The Commercial Vehicle Survey a survey that gathered complete travel information from more than 800 commercial vehicles on an assigned day; and - The Non-Respondent Populations Project an effort to evaluate whether those who did not respond to the survey exhibited different travel behavior than people who did respond to the survey. The bulk of this survey work was conducted in 1997-1998, with data "cleaning" and summary conducted through 2001. Focus was calibrated using 2005 data sources including roadway counts, transit boardings, American Community Survey data, and Census data. #### **Demographic Development Estimation** DRCOG works with a panel of economists and planners from both private and public sectors to review current growth trends and evaluate the output of a regional forecast model. This model relates the regional economy to national forecasts by industrial sector. Once employment levels are predicted, a demographic model is used to determine the migration levels needed to generate the labor force to fill the expected jobs. The forecasts are reviewed annually with major revisions expected every five years. #### **Small Area Development Estimates** To provide development data at a level of detail necessary for the travel model, the regional urban activity forecasts are disaggregated into 2,800 transportation analysis zones (TAZs), as shown in Figure 1. The allocation to TAZs is carried out based on an attractiveness index for each TAZ, which in effect develops a desirability "score" for each
TAZ. This score is based on roughly 20 variables such as miles of arterial roadway in the TAZ, rapid transit service, vacant land, local land use plans, growth over the last decade, environmental constraints, and income characteristics. Separate attractiveness indices and allocations are developed for commercial and retail employment, and for households. The zones are filled with new development in the given category starting with the TAZ with the highest attractiveness index. The amount of development allocated to a TAZ is controlled by the amount of vacant land in the zone available for residential or employment uses, the expected density in the zone, and other factors. The model works its way through the list of zones until all of the growth is allocated. The effects of several regional planning policies also are taken into account in the model: open space plans affect the amount of developable land in the relevant TAZs; the regional urban growth boundary affects expected densities, and the development totals in TAZs outside that boundary; and planned urban centers affect the development capacity in the TAZs in which they are planned. Figure 2 shows a flowchart for the process of socioeconomic forecasting in the Denver region. The forecasting results were refreshed in 2009. Figure 1 DRCOG Travel Analysis Zones 52 Figure 2 Socioeconomic Model Elements and Flow 53 Figure 3 Travel Model Elements and Flow #### Focus Model Process Overview Figure 3 shows a simplified diagram of how the *Focus* model components flow after the socioeconomic forecast has been completed. The model begins with a population synthesizer that creates a descriptive database record for each household in the region (about one million records in 2010) and each person (about 2.8 million records in 2010.). Then the travel "skims" are created (travel times, costs, etc.). Tours are the first travel elements to be created. Figure 4 shows a diagram to explain how tours are related to trips. This example diagram has one tour composed of three trips and one intermediate stop. The model then runs through a set of steps for each tour, including activity generation, location choice, mode choice, and time of day choice model components. Then the model runs through a parallel set of model components for each trip within a tour. #### **Highway and Transit System** One of the most significant inputs to all travel model components is the transportation network representation. The highway network is represented by over 25,000 directional road segments, described by location, length, number of lanes, functional classification, and area type. High-occupancy vehicle (HOV) lanes also are represented as special links. Tollway links are assessed an additional impedance to reflect toll charges. The model also includes a fully detailed representation of transit facilities, including all bus and rapid transit lines, park-n-Ride lots, bus stops, and walk access/egress routes. Bus routes follow the same highway network as automobiles trips, and bus speeds are based on auto speeds. Rail speeds are developed based on transit schedule information. Capture areas for park-n-Ride lots are quite broad, permitting trip-makers in the model to select the lot that produces the shortest overall transit path to their destination. As part of the process of estimating highway and transit use, minimum impedance paths are calculated using time, distance and toll cost over the highway and HOV system, and time and cost over the transit system. #### **Model Components** The most important model components are briefly described in the sections below, and Table 1 lists all model components. Most model components are multinomial logit or nested logit models, which are statistical models that have two or more discrete choice outcomes. **Table 1. Focus Model Components** | Population Synthesizer | 14. Tour Time of Day Simulation | |--|---| | TransCAD Initialization | 15. Tour Primary Destination Choice | | TransCAD Trip Generation | 16. Tour Priority Assignment | | 4. TransCAD Skimming | 17. Tour Main Mode Choice | | Size Sum Variable Calculator | 18. Tour Time of Day Choice | | Regular Workplace Location | 19. Intermediate Stop Generation Choice | | 7. Regular School Location | 20. Trip Time of Day Simulation | | 8. Auto Availability | 21. Intermediate Stop Location Choice | | Aggregate Destination Choice Logsum Generation | 22. Trip Mode Choice | | 10. Daily Activity Pattern | 23. Trip Time of Day | | 11. Exact Number of Tours | 24. Write Trips To TransCAD | | 12. Work Tour Destination Type | 25. TransCAD Highway and Transit Assignment | | 13. Work-Based Subtour Generation | | #### **Population Synthesizer** The model begins with a population synthesizer called PopSyn. PopSyn creates a forecast of individual households and persons with detailed demographic characteristics for chosen year. It operates by drawing household and person records from the US Census year 2000 Public Use Microsample (PUMS) with the goal of matching forecasted demographic controls, including land use model households by zone. #### **Highway and Transit Skims** The highway and transit skims are made by finding shortest time paths for origin-destination zone pairs by time-of-day. The skims are used extensively in later model components location choice, mode choice, and time of day choice. #### Denver International Airport/Internal-External/ External-External Trips After skimming is run, the Compass 4.0 model components must be run for airport trips, internal-external trips, commercial vehicle trips, and external-external trips. The entire Compass model must be run to generate and assign these trips. #### **Regular Workplace and School Location** The work location choice model takes all regional workers and assigns them a regular work location zone and point. Characteristics of the worker and their home zone are used in combination with zonal characteristics to determine the desirability of any zone. The work location choice model is a nested logit model with the highest nest for a regular workplace at home or outside the home. At the second level in the next, if an "outside the home" workplace is selected, a particular workplace location zone is chosen. Similarly to the regular work location choice model, the regular school location choice model assigns each student a regular school location zone and school. The model uses information about the student, such as income and age, and information on school enrollment and distance from home to school to determine which schools will be attractive for which students. There are four school location choice models by student grade level: pre-school, kindergarden-8th grade, 9th-12th grade, and university. Four separate models are used to reflect that the decision-making of school location for different grade ranges have significantly different characteristics. The models are all multinomial logit with the choice being the location of the school zone. #### **Auto Availability Choice** The auto availability choice model is a multinomial logit model that selects number of automobiles available for each household in the region. The choices range from no cars to 4+ cars. The model uses information about households and their accessibility to work and school to determine how many autos are available to households. #### **Tour Models** After *Focus* has projected the long-term decisions about work and school location and auto ownership, it forecasts daily activities on a tour-level. The **exact number of tours** model determines exactly how many tours of each type each person will make in his or her day. The tour types predicted for each person include: work, school, escort, personal business, shop, meal, and social recreation. The model outputs this number of tours by purpose into the tours table in the database. The *tour primary destination choice* model selects the destination of tour based the development (e.g. jobs and households) located within the zone. Then it assigns a point within each zone as the final destination. After the tour destination is known, the *tour main mode choice* model predicts the main travel mode used on the tour. The mode chosen is based on the impedances associated with each mode from the tour origin to the tour destination, zonal characteristics, and demographic person characteristics. Given the known tour origin, destination and mode from previous models, the *tour arrival and departure time model* predicts the time arriving at the primary destination of the tour and the time leaving the primary destination, both to within 1 hour periods. #### **Trip Models** After the tour-level models are run, a series of trip-level models are run. The first trip level model is the *intermediate stop generation* model which generates intermediate stops on each tour. The *intermediate stop location choice* model selects the zone for each intermediate stop. The locations of all intermediate stops on tours are modeled one at a time, first for stops from home to the primary activity and then for stops from the primary activity to home. The *trip mode choice* model determines the trip mode on all trips. The tour mode has already been found by the tour mode choice model, and this knowledge is used in combination with skim data, zonal data, and person data to find the trip modes on these tours. Given the origin, destination and mode of each trip, the *trip time of day choice* model predicts the time each intermediate stop will occur. The trip time of day choice model has 24 alternatives corresponding to each hour period. After the trip models have been run, the following information is known for every trip internal to the region: - Origin and Destination Zone and Point Location - Trip Purpose (work, school, escort, personal business, shop, social recreation) - Trip Mode (drive
alone, shared ride 2, shared ride 3+, walk to transit, drive to transit, walk, bike, school bus) - Trip Time of Day (one of 24 hours) - Which tour the trip is part of - What person made the trip - What household the person who made the trip belongs to #### **Network Assignment** Automobile trips are assigned to the highway network via a "user equilibrium" algorithm, after commercial trips have been loaded first using an "all-or-nothing process." The all-or-nothing process simply assigns trips to the shortest path between origin and destination, ignoring possible congestion effects that might cause trips to take different paths. The user equilibrium process assigns the trips between each origin and each destination TAZ in such a way that, at the end of the process, no trip can reduce its travel time by changing its path. In other words, taking into account the congestion produced by all other trips in the region, each trip is following its minimum path. High-occupancy vehicles (HOV) are loaded simultaneously with single-occupant vehicles (SOV). Transit assignment is performed separately, using an all-or-nothing algorithm that does not take into account the possibility that high demand on some transit routes may motivate some riders to shift routes. Finally, the model is run several times, feeding back the output speeds to the input stages that require them as input (among them, the trip distribution stage) until the output speeds and the input speeds match. The model also takes into account the effect of toll costs in roadway route choice by converting toll costs into equivalent time cost using an estimated value of time for automobile trip-makers. #### **Model Calibration** Each *Focus* model component was calibrated using 2005 inputs to 2005 external data sources individually and then the entire model was calibrated aggregately against roadway counts and RTD transit boardings. External data from 2005 was used wherever possible to ensure that the model was correctly capturing observed 2005 Denver travel behavior when 2005 inputs were used in the model. The following 2005 datasets were used to calibrate against: - 2005 American Community Survey (ACS) - 2005 Colorado state demographer data - 2005 Colorado Department of Transportation (CDOT) highway counts - 2005 HPMS estimated regional VMT - 2005 Regional Transportation District (RTD) transit boardings and 2005 Compass trip-based model results. In the spring of 2012, the model was again calibrated, this time using observations of highway volume and transit boardings from 2010. Once comparisons were made of model results against the observed datasets, each model component was calibrated. The calibration involved changing utility function constants, coefficients, and adding variables. Then the model was re-run, results compared again, and modifications made again. This process was iterated as time allowed until satisfactory results were achieved. The major regional level model results of the calibration are shown in Table 2 and Table 3. These tables demonstrate that the aggregate model results match the observed counts and transit boardings well. Table 2. Observed and Modeled Vehicle Miles Traveled on Links with Counts | Observed VMT | Modeled VMT | | | |--------------|-------------|--|--| | 29,061,936 | 28,285,657 | | | **Table 3. Observed and Modeled Transit Boardings** | Observed Transit | Modeled | | |------------------|-------------------|--| | Boardings | Transit Boardings | | | 317,645 | 320,584 | | #### Air Quality Modeling Formal air pollutant emissions modeling is conducted by the APCD. However, DRCOG, the APCD, and other agencies work closely together in this effort, both in developing the modeling techniques, assumptions, and parameters, and in executing the model runs. Travel model results are, of course, one of the principal inputs to the air pollutant emissions model. The model produces estimates of the amount of emissions of carbon monoxide (CO), volatile organic compounds (VOCs), oxides of nitrogen (NOx), and particulate matter (PM10) generated by motor vehicles. The results are then combined with numerous assumptions concerning meteorology and atmospheric chemical reactions to produce air pollutant concentration estimates. (intentionally blank) # APPENDIX C PM10 STREET EMISSIONS REDUCTION COMMITMENTS (intentionally blank) ### 2035 Regional Transportation Plan Conformity PM10 Emission Reduction Commitments #### **Adams County** PM10 Emission Reduction Conformity Commitments | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | | | |---------------------------------|----------------------|----------------------------------|--|--| | General PM10 Modeling
Domain | 2015 | 61.87 % | | | | - | 2020 | 10187 % | | | | | 2030 | Let 89 % | | | | | 2035 | 6189 % | | | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Chair man, Adams County Board of Commissioners Signature needed from Chairman, County Board of Commissioners, Mayor/City Manager of Municipality, or Agency Executive Director. ## 2035 Regional Transportation Plan Conformity PM10 Emission Reduction Commitments #### **Arapahoe County** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |---------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 55 % | | | 2020 | 55 % | | | 2030 | 55 % | | | 2035 | 55 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name Public Works Director Title Signature needed from Chairman, County Board of Commissioners, Mayor/City Manager of Municipality, or Agency Executive Director. #### City of Arvada **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 71.5 % | | | 2020 | 71.5 % | | | 2030 | 71.5 % | | | 2035 | 71.5 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Craig G. Kocian, <u>City Manager</u> Title #### **City of Aurora** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |---------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 45 % | | | 2020 | 45 % | | | 2030 | <u>45</u> % | | | 2035 | <u>45</u> % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. | | Mehad | 6/10/10 | |-------|----------------------|---------| | Name | Nancy Freed | Date | | | Interim City Manager | | | Title | | | #### **Boulder County** PM10 Emission Reduction Conformity Commitments | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |---------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 31 % | | | 2020 | 31 % | | | 2030 | 31 % | | | 2035 | 31 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. | Ben Pearlman | | |-------------------------|----------| | Den realem , vice chair | 07/20/10 | | Name . | Date | | County Commissioners | | | Title | | #### **City of Boulder** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |---------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 70 % | | | 2020 | 70 % | | | 2030 | 70 % | | | 2035 | 70 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. | Jane 5. R |) routizani | 06.10.2010 | |-----------|-------------|------------| | Name | 0 | Date | | CITY MAN | A C-GR | | ### **City of Brighton** **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 42.1 % | | | 2020 | 42.1 % | | | 2030 | 42.1 % | | | 2035 | 42.1 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. | 7-//Be | 6/29/10 | |-------------|---------| | Name | Date | | Title Manue | | #### **City and County of Broomfield** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction Commitment | |---------------------------------|----------------------|-------------------------------| | General PM10 Modeling
Domain | 2015 | 68.2 | | | 2020 | 68.2 | | | 2030 | 68.2 % | | | 2035 | 68.2 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. CITY & COUNTY MANAGER #### **Castle Rock** **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction Commitment | |----------------------------------|----------------------|-------------------------------| | PM10
Attainment/Maintenance | 2015 | 65 % | | Area | 2020 | 65 % | | | 2030 | 65 % | | | 2035 | 65 % | It is our intention to pursue the above
percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. | Thatfiell | 6/16/10 | |-----------------------------|---------| | Name Robert Goebel, P.E. | Date | | Public Works Director Title | | #### **City of Centennial** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |---------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 45 % | | | 2020 | 45 % | | | 2030 | 45 % | | | 2035 | 45 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name Jacque Wedding-Scott 6 / 8 / 10 Date Title City Manager #### **City of Cherry Hills Village** **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 55 % | | | 2020 | 55 % | | | 2030 | <i>55</i> % | | | 2035 | <i>55</i> % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name ETOM CITY MENEGER #### Colorado Dept. of Transportation, Region 1 **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 42 % | | | 2020 | 43 % | | | 2030 | 44 % | | | 2035 | 45 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name Title 6-29-2010 Date #### Colorado Dept. of Transportation, Region 4 **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 55 % | | | 2020 | 55 % | | | 2030 | 55 % | | | 2035 | 55 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name Title #### Colorado Dept. of Transportation, Region 4 **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 55 % | | | 2020 | <i>35</i> % | | | 2030 | 55 % | | | 2035 | 55 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. | CHRISTIAN P. KELLY | 6-29-10 | |--------------------|---------| | Name | Date | | LTC OF I | | | Title | | #### Colorado Dept. of Transportation, Region 6 **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | Sweep Box | 2015 | 83 % | | | 2020 | 83 % | | | 2030 | 83 % | | | 2035 | 83 % | | General PM10 Modeling Domain | 2015 | 58 % | | | 2020 | 58 % | | | 2030 | 58 % | | | 2035 | 58 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name 6-8-10 Date REGION 6 TRANSPORTATION DIRECTOR Title ### Colorado Dept. of Transportation, Region 6 HOT lanes and future toll lanes with CDOT oversight **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction Commitment | |-------------------------------|----------------------|-------------------------------| | Sweep Box | 2015 | 83 % | | | 2020 | 83 % | | | 2030 | 83 % | | | 2035 | 83 % | | General PM10 Modeling Domain | 2015 | 58 % | | | 2020 | 58 % | | | 2030 | ⁵⁸ % | | | 2035 | 58 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name / Mun- Date REGION 6 TRANSPORTATION DIRECTOR Title June 1st, 2010 **Board Officers** Rod Bockenfeld, Chair Jim Taylor, Vice Chair Dennis McCloskey, Secretary Sue Horn, Treasurer Ed Peterson, Immediate Past Chair Jennifer Schaufele, Executive Director Ms. Ann Jennings Town Administrator/Clerk Town of Columbine Valley 2 Middlefield Road Columbine Valley, CO 80123 Dear Ms. Jennings: The Denver Regional Council of Governments (DRCOG) is preparing to demonstrate that the updated 2035 Regional Transportation Plan (RTP) and associated 2012-2017 Transportation Improvement Program (TIP) are in conformity with the Colorado air quality program. A positive conformity finding permits road and transit capacity projects contained in the updated 2035 RTP and 2012-2017 TIP to be constructed. Critical to achieving a positive conformity finding is meeting the fine particulate matter (PM₁₀) emissions budget of 55 tons per day for mobile sources for 2035. In order to continue to meet the PM_{10} budget, DRCOG is once again asking local governments and state agencies to commit to road sand reductions and street sweeping actions (compared to the 1989 baseline practices). It is through these commitments DRCOG has been able to demonstrate that the PM_{10} air quality standard will not be violated in the future. Please indicate below which agency conducts winter maintenance (street sanding & sweeping) for Town of Columbine Valley: Option I. Conducted by Town of Columbine Valley or contractor(s) hired by Town of Columbine Valley Option II. Conducted by another agency (e.g. the county or CDOT) or its contractor(s) Please specify this agency City of Little N If the answer is Option I, DRCOG is asking you now to make PM₁₀ emission reduction commitment using the enclosed PM₁₀ Emission Reduction Commitment form. This provides an opportunity for Town of Columbine Valley to demonstrate its willingness to assist the region in meeting air quality requirements. The Air Quality Control Commission Regulation 16 requires PM_{10} emission reduction of 30% for the area under your maintenance, which is considered the legal minimum. Just applying the legal minimum will be insufficient for the region to meet the budget. Therefore, to help Town of Columbine Valley June 1st, 2010 Page 2 meet the budget your commitment should exceed the minimum required by the regulation. The specific method used to achieve the emission reductions need not be specified at this time. Please note that PM₁₀ commitments are part of the evaluation criteria to be used later in this year for projects submitted for funding in the *2012-2017 TIP*. A commitment greater than a 30% reduction from the 1989 baseline practices is worth 1 point, a 45% reduction 2 points and a 55% reduction 3 points. However, until Town of Columbine Valley makes commitments, it cannot claim these points in the upcoming TIP solicitation process. If the answer is Option II, you are not asked to make emission reduction commitment. The conducting agency's commitment, if any, is considered to apply to Town of Columbine Valley. Town of Columbine Valley will be granted the same credits as the conducting agency for your proposed TIP projects. Please complete and return this letter, and the enclosed PM₁₀ Emission Reduction Commitment form if applicable, to Wei Chen at DRCOG by June 30, 2010. A return envelope is enclosed for your use. If you have questions, please contact Wei Chen at (303) 480-6760 or Steve Cook at (303) 480-6749. If you would like to learn detailed information about the *PM10 Maintenance Plan* or the methodology used to calculate the % agency PM₁₀ emissions reduction, please email to Wei Chen at wchen@drcog.org and electronic materials will be emailed to you. Sincerely, Jennifer Schaufele Executive Director **Enclosures** cc: Gale Christy, DRCOG Board Representative Wei Chen, Denver Regional Council of Governments #### **City of Commerce City** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction Commitment | |---------------------------------|----------------------|-------------------------------| | General PM10 Modeling
Domain | 2015 | 40 % | | | 2020 | <u>45</u> % | | | 2030 | 4D % | | | 2035 | 40 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name Date Title #### **City and County of Denver** **PM10 Emission Reduction Conformity Commitments** | Pivitu Emission Reduction Conformity Commitments | | | |--|-------------|---------------------------| | Geographic | For Staging | Emission Reduction | | Area of Commitment | Years | Commitment | | Sweep Box | 2015 | 64. % | | , <u>-</u> | 2020 | 64 % | | | 2030 | 64 % | | | 2035 | 64 % | | Denver CBD | 2015 | 72 % | | | 2020 | 72 % | | | 2030 | 72 % | | | 2035 | 72 % | | General PM10 Modeling
Domain | 2015 | 42 % | | | 2020 | 42 % | | | 2030 | 42 % | | | 2035 | 42 % | | It is our intention to pursue the above percentages of PM10 e | mission reductions | |---|--------------------| | compared to the 1989 baseline as goals for the years noted. | | | Sullino V. Vella | 7/86/2010 | | Name | Date | Marager of Public Works, Denner, Co #### **Douglas County** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For
Staging
Years | Emission Reduction
Commitment | |---------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 30 % | | | 2020 | 30 % | | | 2030 | 30 % | | | 2035 | 30 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name 6-1-201 b CHAIR, DOUGLAS COUNTY BOARD OF COMMISSIONERS Title #### **City of Englewood** **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 58% | | | 2020 | 58% | | | 2030 | 58% | | | 2035 | 58 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name Title #### E-470 Public Highway Authority **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |---------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 61.9 % | | | 2020 | 61.9 % | | | 2030 | 61.9 % | | | 2035 | 61.9 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name John McCusten *6 - 8 - ∂ ⊃ ₁* ⊃ Date Title #### **Town of Foxfield** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |---------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | <u>e</u> 4 % | | | 2020 | (Y % | | | 2030 | () % | | | 2035 | 4 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name Day Hidley Title ### **City of Glendale** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |-------------------------------|----------------------|----------------------------------| | General PM10-Modeling Domain | 2015 | 52.5 % | | | 2020 | 52.5 % | | | 2030 | 52.5 % | | | 2035 | 52.5 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Robert D. Taylor June Name Dat Public Works Director Title Signature needed from Chairman, County Board of Commissioners, Mayor/City Manager of Municipality, or Agency Executive Director. Sum 9 2010 City Manager #### City of Greenwood Village **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 58 % | | | 2020 | <u>58</u> % | | | 2030 | 56 % | | | 2035 | <u>58</u> % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name Titla #### **Jefferson County** **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | Foothills | 2015 . | % | | | 2020 | % | | | 2030 | % | | | 2035 | % | | General PM10 Modeling Domain | 2015 | 4 % | | | 2020 | 4 % | | | 2030 | <u>4</u> % | | | 2035 | <u>4</u> % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Vaffexalle Date THE #### City of Lafayette **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |---------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 46.0 % | | | 2020 | 46.0 % | | | 2030 | 46.0 % | | | 2035 | Y6.0 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name Title 6/4/10 Date #### City of Lakewood **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 45 % | | | 2020 | 45 % | | | 2030 | 45 % | | | 2035 | 45 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name City Manager Title #### **City of Littleton** **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | (OC) % | | i | 2020 | 60% | | | 2030 | 60 % | | | 2035 | (C % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name C- Woods City Manager Title ### Longmont **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |--------------------------------|----------------------|----------------------------------| | PM10
Attainment/Maintenance | 2015 | 55 % | | Area | 2020 | 55 % | | | 2030 | 55 % | | • | 2035 | 55 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name Title ### **City of Louisville** **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 68.3 % | | | 2020 | 68.3 % | | | 2030 | 68.3 % | | | 2035 | 68.3 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Malcolin Fleming Date City Manager #### **Town of Morrison** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction Commitment | |-------------------------------|----------------------|-------------------------------| | General PM10 Modeling Domain | 2015 | 100 % | | | 2020 | | | | 2030 | % | | | 2035 | 100 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name / Earl Aukland Mayor Title #### **Town of Mountain View** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |---------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 10 % | | | 2020 | 20 % | | | 2030 | 30 % | | | 2035 | <i>45</i> % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name Barres G. C4. 2dC Date #### **City of Northglenn** **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 55 % | | | 2020 | 55 % | | | 2030 | <u>55</u> % | | | 2035 | 5 5 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. | William a Emminos | JUNE 30 JOIZ | |-------------------|--------------| | Name | Date | | etty mamager | | | Title | | #### **Northwest Parkway Authority** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |---|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 45 % | | Transproper control of material file. The miles | 2020 | 45 % | | | 2030 | 45 % | | | 2035 | 45 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. #### **Town of Parker** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |---------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | % | | | 2020 | % | | | 2030 | % | | | 2035 | <u></u> % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. | Gyara | | |--------|------| | Name X | Date | | | | | Title | | ### **Regional Transportation District** **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |----------------------------------|----------------------|----------------------------------| | PM10
Attainment/Maintenance | 2015 | 56 % | | Area | 2020 |
<u>56</u> % | | | 2030 | 56 % | | | 2035 | <u>56</u> % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name Phillip A. Washington Date Title General Manager #### **City of Sheridan** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |---------------------------------|----------------------|----------------------------------| | General PM10 Modeling
Domain | 2015 | 3/ % | | | 2020 | 31 % | | | 2030 | 31 % | | | 2035 | 3/ % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. | RANDY MOURNING | 6/28/2010 | |----------------|-----------| | Name , | Date | SUPERINTENDENT / LEIGHBORHOOD STRVICE OFFICER. Title #### **City of Thornton** **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction Commitment | |----------------------------------|----------------------|-------------------------------| | General PM10 Modeling Domain | 2015 | 60 % | | | 2020 | 60 % | | | 2030 | <i>60</i> % | | | 2035 | <i>€</i> ○ % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name Hunt 0-22-10 Data Date Title #### **Town of Ward** **PM10 Emission Reduction Conformity Commitments** | Geographic Area of Commitment | For Staging
Years | Emission Reduction
Commitment | |-------------------------------|----------------------|----------------------------------| | Foothills | 2015 | % | | | 2020 | % | | | 2030 | % | | | 2035 | <u></u> % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. | return to Color | 6/9/10 | |------------------------|--------| | Name PETER J. GLECHMAN | Date | | MATOR | | | Title | | #### **City of Westminster** **PM10 Emission Reduction Conformity Commitments** | | for | | |-----------------------|---------|---------------------------| | Geographic | Staging | Emission Reduction | | Area of Commitment | Years | Commitment | | General PM10 Modeling | 2015 | 55 % | | Doman | 2020 | 55 % | | | 2030 | 55 % | | | 2035 | 55 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. Name 5/9/2010 Date City Manager Title #### **City of Wheat Ridge** **PM10 Emission Reduction Conformity Commitments** | Geographic
Area of Commitment | For Staging
Years | Emission Reduction Commitment | |----------------------------------|----------------------|-------------------------------| | General PM10 Modeling
Domain | 2015 | 55 % | | | 2020 | <u>55</u> % | | | 2030 | S5 % | | | 2035 | 55 % | It is our intention to pursue the above percentages of PM10 emission reductions compared to the 1989 baseline as goals for the years noted. C, TY MANAGER Title (intentionally blank) #### **APPENDIX D** # U.S. DEPARTMENT OF TRANSPORTATION CONFORMITY FINDING (TO BE PROVIDED) (intentionally blank) ### **APPENDIX E** ### LIST OF ACRONYMS | ACT | Agency Coordination Team | | |--------|---|--| | APCD | Air Pollution Control Division | | | AQCC | Air Quality Control Commission | | | BNSFRR | Burlington Northern Santa Fe Railroad | | | CAMP | Continuous Air Monitoring Project | | | CDOT | Colorado Department Of Transportation | | | CMAQ | Congestion Mitigation Air Quality | | | CO | Carbon Monoxide | | | DRCOG | Denver Regional Council Of Governments | | | EPA | United States Environmental Protection Agency | | | FHWA | Federal Highway Administration | | | FTA | Federal Transit Administration | | | HOT | High-Occupancy Toll | | | HOV | High-Occupancy Vehicle | | | MPO | Metropolitan Planning Organization | | | MVRTP | Metro Vision Regional Transportation Plan | | | NAAQS | National Ambient Air Quality Standards | | | NO | Nitrogen Oxide | | | PM | Particulate Matter | | | Ppm | Parts per Million | | | RAQC | Regional Air Quality Council | | | RTD | Regional Transportation District | | | RTP | Regional Transportation Plan | | | SIP | State Implementation Plan | | | TCM | Transportation Control Measures | | | TDM | Transportation Demand Management | | | TIP | Transportation Improvement Program | | | TMA | Transportation Management Area | | | TMO | Transportation Management Organization | | | TSSIP | Traffic Signal System Improvement Program | | | VOC | Volatile Organic Compounds | |